REGGE THEORY AND PARTICLE PHYSICS

P.D.B.COLLINS

Physics Department. University of Durhain, Durnam City, Ensland

NORTH-HOLLAND PUBLISHING COMPANY - AMSTERDAM

REGGE THEORY AND PARTICLE PHYSICS

P. D. B. COLINN

Physics Department, Untwertity of Dwrham, Dwomom City, Aupland

Received 6 November 1970

Contents:

1. Introduction 105
2. Ouiline of Regge theory 100
3. Regge trajectori6s ard resonances 12
4. Properties of Regge noles 185
5. Regge cuts 158
6. Duality 111
7. High energy phenomenology 201
8. Some conelasions 23
Acknowild dgements 20
References 20

Aostract:

An introductory review of the application of con plex J-plane theory, or Regge iheory, to the analysis of elementary particle processes is given. He describe how a hellicity armplitude may be represented in terms of tis d-plase uingularities, and the restrictions which can be placed on those singularitles. The properties of Regge poles and cuts, and the evaluation of cut contributions, are diacussed, and the concept of duality, and the formulation of dual models is considercd. The way in which information about the Regge angularities can be deduced from the experimental data, both from the resonance spectrum and from the highenergy behaviour of scattering amplitudes is dascribed, and an attempt is mace tr ussesa the current state of Regge phenomenolngy and lts olace in particle phys as.

Single arders for this issue

PHYSICS REPORTS (esetion C of PHYBICS LETTERS) 1, nc. 4 (1971) 103-234.
Coples of this issue may be obtained at the price given below. All oxtere ahould to sent directly to the Fablisber. Orders muat by accompanied by check.

Single issue price Ïin. $^{36} \mathbf{3 6}-\mathbf{\$ 1 0 . 5 0}$. postage included.

CEAPTER 1

INTRODIICTION
Most current attempts to understand the strong interactions of elementary particles are claracterized by a concern with the complex angular momentum plane (or i-plane), and much of the literature makes at least some reference to it. But we hare travelled a long way since negge's pioneering work of $1959[i-3]$, and there is now not much use of the frameswork of potential ssatiering on which the original discussions were based. In fact almost from twe beginning most of tie irm lerest has centred on the phenomenological implications of Regge theory rather than on its relation to the fundamental dynamical principles (whatever these may be).

The basic Idea of Regge theory, to be explained in more detail later, is that scattering amplitudes are analytic functions of the angular momentum, J, and that a particle of mase m and apin σ will lie on a rtegge trajectory $\alpha(t)$ (where t is the square of the centre of mass energy) such that the partial wave amplitude has a pole of the form $H=\alpha(D)^{-1}$, and such that $\alpha\left(m^{2}\right)=\sigma$. Such particles are said to be 'composite' because they behave in the angular momentum plane like the bound gtates of potential scatterizg rather than the fixed spin 'elementary' particles of a Lagrargian tield theory, which do not correspond to J-plane poles. Since $\alpha(t)$ may pass through several integer values (or half-odd-integers for fermions) several particles, of increasing spin, may lie on the same trajectizy.

It is generally believed that the strong interactions forces are due to the exchange of such composite particles, or Regge poles, and, as we shall see, such an exchange (see fig. 1) gives a definite prediction for the high energy behaviour of the ncattering amplitude $A(s, t)$ (where now s is the square of the centre of mass enessy, and $-i$ is the momentum transfer) viz.

$$
\begin{equation*}
A\left(s_{\mathrm{r}} t\right) \sim s^{\alpha(t)} \tag{1.1}
\end{equation*}
$$

where $\alpha(t)$ is the highest trajectory.

Fig. 1. The exchange of a t-channel Regge pole $\alpha(t)$ in the s-channel scattering process $1+2-3+4$.

Similarly Regge cuts in the J plane correspond, in a rather complicated way, to the exchange of two or more particles, and their asymptotic behaviour may include logarithmic terms, such as

$$
\begin{equation*}
A(s, t) \sim s^{\alpha_{\mathrm{c}}^{(t)}}(\log s)^{-1} \tag{1.2}
\end{equation*}
$$

where $\alpha_{c}(t)$ is the position of the highest bxanch point. In general there will be many poles and cuts exchanged in a given amplitude, so the asymptotic behaviour may be a sum 0 : terms like (1.1) and (1.2).

Though Regge pole phenomenology excited much interest in the early years (1961-1968) [4,5] this enthusiasm was short-lived, mainly it would seem because of the failure of one important prediction - that if a single pole dominated the forward pear. of the πN elastic scattering differential cross section it would shrink with increasing energy. It remained fairly easy to fit all the available data with legge poles, but the number of parameters needed seemed disproportionate in the amount of data fitted. However, as better data, particularly on inelastic processes, became available, starting about 1965, interest revived, and Regge phenomenology has become a thriving industry.

This certainly does not mean that Regge theory is without its problems, or that all the available data can be fitted by a few J-plane singularities without ambiguity. But is does mean that there is now widespread agreement that the complex J-plane is a good place to try and analyse what is going on.

In this sense Regge analysis is in a rather similar position to partinl wave 'nalysis. It is well recognised that where sufficient low energy data ts available < n essential preliminary to a thorough understanding of the scattering process is to resolve the amplitude into partial waves. One does not, of course, expect that such an analysis will always be free from ambiguity, or that it will be possible to interpret the amplitude by a simple model, such as a sum of Breit-Wigner resnnances. It is rather that by making use of such a basic notion as angular-mome:tum conservation ore expects to get nearer to the hount of the problem.

Similarly with Regge analysis, whenever there is sufficient high energy data it must now be regarded as an essential preliminary to analyse the amplitudes in terms of carossed channel J-piane singularities. Again there will be ambiguities, and there is certainly no reason why a few Regge poles should suffice, but once one has some idea of the J-plane structure of an amplitude one can start trying to deduce the basic tynamics on which that structure is based.

In fact our understanding of the fundamental dynamics lying behind the successes of Regge phenomenology has made very little if any real progress since the introduction of Regge's ideas into S-matrix theory in $1961[6-9]$. Indeed we shall argue in the concluding chapter that the foundations of Regge theory now seem if anyihing less comprehensible than thry did a few years ago, though there have been some promising developments, such as the multiperipheral bootstrap, and the introtuction of dual models. But there has been a tremendous increase in our understanding of how to apply the basic ideas of Regge theory to scattering amplitudes involving particles with spin, and unequal masses, and a great improvement In the availability of experimental data with which to try and locate the dominant poles and cuts.

In this report we shall attexnpt to review the progress which has been made in recent years in sharpening the tools of Regge analysis, particularly as regards the kinematics of Regge poles and the evaluation of Regge cuts. Our emphasis throughout is on those aspects of Regge theory which are of interest to the phenomenolog!at. We assume that the reader is already aquainted with the basic ideas of S-matrix theory [10-13], and begin, in the next chapter, with the representation
 brief review of the information about Regge trajectories which can be ootained Irom all examination of the resonince spectrum. In chapter 4 we summarise the varions kinematical and dynamical requirements which must be satisfied by Regge poles - their analyticity properties, the corspiracy relations, etc. Chapter 5 is cevoted to a discussion of the theoretical aspects of Regge cuts, and recent attempts to estimate their magnifude.

In chanter 6 we give a rather brief survey of the idea of duality, which has pl.yed such an important, but as yet controversial role in particle physics, and tir n in chapter 7 we review the application of the preceding theory to the experimental data. Some conclusions are drawn in the final chapter.

We have resiricted ourselves almost entirely to the two particle \cdot. iwo particle amplitudes, partly because the evidence here is so much move complete that it is for multiple production processes, and partly through lack of space. The literature on Regge fits is so vast that one can not hope to be comprehensive, nor in a rapidly ch.anging field can one be completely up to date, but we have tried to give a reisonably bnlanced sury $\leqslant y$ of the successes and difficulties. We have omitted almost all applications of Regge theory ouiside phenomenology. In particular we do not discuss the several tifferent types of bootstrap equations using Frgge poles. some of which seem to cffer exciting prospects for putting Regge theory on a deeper theoretical foundation.

We hope that the treatment given is sufficiently detailed to ser re as an introduction, but the going may be rather heavy for the reader who is meeting these things fo:- the first time, and he is advised to skip the more complicated parts at first reading. He may also wish to consult some of the earlier introductory works on Resge poles in potential scattering $[4,5,14]$, and in S-matrix theory $[10-14]$. The author has already collaborated in a review of the subject [15], but that was three years ago, a long time in particle physics, and in any case the viewpoint here is rather different. However, reference is frequently made to that book for points we do not have space 10 discuss fully here, and where possible the same notation is used. This does not of course mean that this is the only, or the best, place where the required material can se found.

Because of the fairiy comprehensive references to eariy work which ean be
found in refs. [4,5,15] it has not been thought necessary to give full credit for the older established parts of the subject. Nore care has been taken with references to work since 1967, but of course no ciaim to comprehensiveness can be made. The render is aiso recommended to other recent reviews such as refs. [16-18].

CHAPTER 2
 OUTLINE OF REGGE THEORY

2.1. Introduction

In this chapter we shall outline the basic ideas involved in complex angular momentum theory - or Regge theory for short.

We begin by defining our kinematics, and introduce helicity amplitudes, $A_{H}(s, t)$ (for both the s and t channels) which we shall use to describe scattering processes involving particles with spin. We then define t-channel partial-wave amplitudes $A_{H J}(t)$ using the conventional projection in terms of rotation functions $d_{i^{\prime}}^{J}\left(z_{t}\right)$. Defined in this way the partial wave series diverges outside the t-channel physical region at the point where we reach the nearest singularity in s, but we can circumvent this difliculty by writing a dispersion relation for the amplitude in s at fixed i, We then obtain the so-called Froissart-Gribov partial-wave projection.

These partial-wave ainplitudes are shown to have a unique continuation in 7 , at least as long as the Froissart-Gribov projection is detined. Certain problems concerning signature and parity have to be discussed, however, and these considera-b:- complicate the basic simplicity of the arguments which one would use for spinless particles. The partial wave series is then rewritten as a contour integral in the J-plane - the Sommerfeld-Watson transform - and the integration contour is opened up to expose the pole and branch point singularities in J of $A_{H J}(t)$.

It is then found that the presence of a singularity at $J=\alpha(t)$ leads to the prediction of the power behaviour for the total amplitude given in (1.1), viz.
$A_{H}(s, t) \sim s^{\alpha(t)}$ (with possible log s factors if the singularity is a cut). This profoune coniection between the schannel J-plane singularities and the s-channel asymptotic behaviour is at the heart of Regge analysis. The well known physical interpretation of a e^{y}-lane pole as the exchange of a t-channel particle, and of a cut is the exchange of severai particles simultaneously, is left to subsequent chapters, but we conclude with a brief discussion of the restrictions which unitar. ity places on Regge sineularities, including the Frolssart bound, the absence of fixed poles unless there are also evts, aitd the factorization of pole residues; and we show that cuis are needed to make the Gribov-pomeranchuk fixed poies compatible with unitarity.

2.2. Kirtematics

We consider the strong intesaction process shown in fig. 2 in which the direct or s-channel consicta of particles 1 and 2 entering the scattering ragion, and 3 and 4 emerging. It loes not concern us here whether the particles are stable, or are resonances whicii subsequently decay. In either case it is found that the scatiering is predominantly in the forward and/or backward directions at high energies, and controlled by the exchange forces from the t and u crossed channels respectively. We shall concentratn on describing how the t-channel forces govern the forward direction - the corresponding u channel description is then obvious.

Each particle (mass $m_{i} ; i=1, \ldots, 4$) carries a four momentum p_{i} (as shown in fig. 2) and from these we constiruct the usual Mandelstam invariants [19]

$$
\begin{equation*}
s=\left(t_{1}+p_{2}\right)^{2}, \quad t=\left(t_{1}+p_{3}\right)^{2}, \quad u=\left(p_{1}+p_{4}\right)^{2} . \tag{2.1}
\end{equation*}
$$

of which only? are independent since we have the .anctraint

$$
\begin{equation*}
s+t+u=\Sigma m_{i}^{2} \equiv \Sigma \tag{2.2}
\end{equation*}
$$

Then $\sqrt{ } s$ is the centre of mass energy in the s-channel and, $-t$ the momentum transfer squared. The centre of mass 3 -momentum of particles 1 or 2 is given by [20]

$$
\begin{equation*}
q_{s 12}^{2}=\frac{1}{4 s}\left[s-\left(m_{1}+m_{2}\right)^{2}\right]\left[s-\left(m_{1}-m_{2}\right)^{2}\right] \tag{2.3}
\end{equation*}
$$

and the centre of mass scattering angle is

$$
\begin{equation*}
\cos \theta_{s} \equiv z_{s}=\frac{s^{2}+s(2 t-\Sigma)+\left(m_{1}^{2}-m_{2}^{2}\right)\left(m_{3}^{2}-m_{4}^{2}\right)}{4 s q_{s} 12 q_{s} 34} \tag{2.4}
\end{equation*}
$$

Similarly if we consider scattering in the t-channel corresponding relations may be written down for $q_{t} 13, q_{t 24}$ and $\cos \theta_{t} \equiv z_{t}$ by permuting the variables. The physical regions are bounded by $-1 \leqslant z_{s} \leqslant 1$, etc. and these boundaries are given by

$$
\begin{align*}
& \phi(\mathrm{s}, t) \equiv s t u-s\left(n_{\Lambda}^{2}-m_{3}^{2}\right)\left(m_{\mathrm{c}}^{2}-m_{4}^{2}\right)-t\left(m_{1}^{2}-m_{2}^{2}\right)\left(m_{3}^{2}-m_{4}^{2}\right) \\
& \quad-\left(m_{1}^{2} m_{4}^{2}-m_{2}^{2} m_{3}^{2}\right)\left(m_{1}^{2}+m_{4}^{2}-m_{2}^{2}-m_{3}^{2}\right)=0, \tag{2.}
\end{align*}
$$

see fig. 3.

Fig. 2. The scattering ampiitude for a general four-body process. The s-channel reaction is $1+2 \rightarrow \overline{3}+4$, the t-channel is $2+4 \rightarrow$ $-\overline{1}+\overline{3}$, and the u-channel is $1+4 \rightarrow \overline{3}+\overline{2}$ where the bar indicates the sinti-particle. These three processes are related by crossing.

Fig. 3. The Mancialstam plot for $\pi N \rightarrow \pi N$ and its related processes. The physical regions of the three channels are shaded.

The helicity of a particle, μ, is defined as the projection of its spin, σ, in its direction of motion [21] i.e.

$$
\begin{equation*}
\mu=\frac{p \cdot a}{|p|} \tag{2.8}
\end{equation*}
$$

where p is the 3 -vector momentum. μ spans the $2 \sigma+1$ values $\mu=\sigma, \sigma \sim 1, \ldots,-\sigma$,
We denote a centre of mass helicity scattering amplitude [21] for our s-channel process by

$$
\begin{equation*}
\left\langle\mu_{3} \mu_{4}\right| A(s, t)\left|\mu_{1} \mu_{2}\right\rangle \equiv A_{H_{s}}(s, t) \tag{2.7}
\end{equation*}
$$

since we know from Lorentz invariance that the amplitude is a function only of the Mandelstam invariants, s and t, and the four helicities μ_{i}. We 1 apresent these collectively by H_{s}, the suffix being used to indicate that the helicities are measured in the s-channel centre of mass system.

The anplitudes are chosen to be normalized as in ref. [15], so that the optival theorem reads

$$
\begin{equation*}
\sigma_{\text {tot }}(s)=\frac{1}{2 q_{s} 12^{\sqrt{s}}} \operatorname{Im}\left\langle\mu_{1} \mu_{2}\right| A(s, 0)\left|\mu_{1} \mu_{2}\right\rangle, \tag{2.8}
\end{equation*}
$$

and the amplitudes are related to the unpolarized differential cross section oy

$$
\begin{equation*}
\frac{\mathrm{d} \sigma}{\mathrm{~d} t}=\frac{1}{64 \pi s q_{s 12}^{2}} \frac{1}{\left(2 \sigma_{1}+1\right)\left(2 \sigma_{2}+1\right)} \sum_{H_{s}}\left|A_{H_{s}}(s, t)\right|^{2}, \tag{2.9}
\end{equation*}
$$

where we sum over all the possible combinations ${ }^{\circ}$ the μ_{i}.
We also need to use helicity amplitudes cietined in the t-channel centre of mass system

$$
\begin{equation*}
\left\langle\lambda_{2} \lambda_{4}\right| A(s, t)\left|\lambda_{1} \lambda_{3}\right\rangle \equiv A_{H_{t}}(s, t) \tag{2.10}
\end{equation*}
$$

where the λ_{i} are the t-channel helicities. The crossing postilate [10-13, 15] requipes that (2.7) and (2.10) should be the same analytic function, apart irom the n 4 ad to rotate the helicities from the direction of motion of the particles in one centre of mass system to the other [22]. So we have

$$
\begin{equation*}
A_{H_{s}}(s, t)=\sum_{H_{t}} M\left(H_{s}, H_{i}\right) A_{H_{t}}(s, t) \tag{2.11}
\end{equation*}
$$

where $M\left(H_{s}, H_{\vec{l}}\right)$ is the helicity crossing matrix [22-24], which is simply the prod uct of the rotation matrices needed to rotate the helicities of the particles

$$
\begin{equation*}
M\left(H_{s}, H_{t}\right)=d_{\lambda_{1} \mu_{1}}^{\sigma_{1}}\left(\mathrm{x}_{1}\right) a_{\lambda_{2} \mu_{2}}^{\cdot S_{2}}\left(\mathrm{x}_{2}\right) d_{\lambda_{3} \mu_{3}}^{\sigma_{3}}\left(\mathrm{x}_{3}\right) d_{\lambda_{4} \mu_{4}}^{\sigma_{4}}\left(\mathrm{x}_{4}\right) \tag{2.12}
\end{equation*}
$$

where the angles of rotation are

$$
\begin{equation*}
\cos X_{1}=\frac{\left(s+m_{1}^{2}-m_{2}^{2}\right)\left(t+m_{1}^{2}-m_{9}^{2}\right)-2 m_{1}^{2}\left(m_{1}^{2}-m_{2}^{2}-m_{3}^{2}+m_{4}^{2}\right)}{\left\{\left[s-\left(m_{1}+m_{2}\right)^{2}\right]\left[s-\left(m_{1}-m_{2}\right)^{2}\right]\left[t-\left(m_{1}+m_{3}\right)^{2}\right]\left[t-\left(m_{1}-m_{3}\right)^{2}\right]^{\frac{1}{2}}\right.} \tag{2.13}
\end{equation*}
$$

etc. Because of the orthogonality of this matrix we can also write

$$
\begin{equation*}
\frac{\mathrm{d} \sigma}{\mathrm{~d} t}=\frac{1}{64 \pi s q_{s 12}^{2}} \frac{1}{\left(2 \sigma_{1}+1\right)\left(2 \sigma_{2}+1\right)} \sum_{H_{t}}\left|A_{H_{t}}(s, t)\right|^{2} . \tag{2.14}
\end{equation*}
$$

Eqs. (2.9) and (2.14) are equivalent, but care is needed in interpreting this equality outside the physical regions of the s or t channels where the crossing matrix has singularities (see e.g. ref. \{25!).

2.3. Partial wave amplitudes

We have already indicated that the basic idea of Regge theory is to relate the s channel differential cross section, etc. to the angular momentum structure of the corresponding i-chainnel process.

The scattering amplitude may be expressed as a partial wave series by [21]

$$
\begin{equation*}
A_{H_{t}}(s, t)=16 \pi \sum_{J=M}^{\infty}(2 d+1) A_{H,}(t) d_{\lambda N^{\prime}}^{J}\left(z_{t}\right) \tag{2.15}
\end{equation*}
$$

where J is the total angular momentum and is an integer or half-odd-integer depending on whether the t-channel has even or odd fermion number. The partial wave amplitudes $A_{H f}(t)$ represent the scattering in the particular angular momentum state. (The suffix t is dropped from $X i$ for simplicity.) The $d_{\lambda \lambda^{\prime}}^{j}\left(z_{l}\right)$ are the rotation functions [26] with

$$
\lambda \equiv \lambda_{1}-\lambda_{3}, \quad \lambda^{\prime} \equiv \lambda_{n}-\lambda_{4} \quad \text { and } \quad M \equiv \max \left\{|\lambda|,\left|\lambda^{\prime}\right|\right\}
$$

The sum starts at $j=M$ since the projection of the orbital angular momentum in the direction of motion is zero, so J can not be less than the sum of the spin projections in that direction.

The inverse to (2.15) is

$$
\begin{equation*}
A_{H_{J}}(t)=\frac{1}{32 \pi} \int_{-1}^{1} A_{H_{t}}(s, t) d_{\lambda \lambda^{\prime}}^{J}\left(z_{t}\right) \mathrm{c} z_{t} \tag{2.17}
\end{equation*}
$$

where we have used the orthogonality relation

$$
\begin{equation*}
\int_{-1}^{+1} d_{\lambda \lambda^{\prime}}^{J}(\theta) d_{\lambda \lambda^{\prime}}^{J^{\prime}}(\theta) \mathrm{d} \cos \theta=\hat{o}_{J J^{\prime}} \frac{2}{2 J+1} \tag{2.18}
\end{equation*}
$$

The factor 16π in (2.15) is quite arbitrary, but is inserted for convenience (see ref. [15]).

The series (2.15) is only valid for the t-channel physical region and a small region beyond, until we reach the nearest dynamical s-singularity (i.e. inside the small Lehman ellipse [27]). It certainly can not be used in the s-channel physical region. To reach this we need to make an analytic continuation. (This point is discussed in greater detail in e.g. refs. [4, 10, 15].)

There are also kinematical s-singularities of (2.15) at $z_{t}= \pm 1$ which arise $\mathrm{d} s-$ cause of the rotation function [26]

$$
\begin{align*}
a_{\lambda \lambda^{\prime}}^{J}(z)=(-1)^{\left(\lambda-\lambda^{\prime}-\left|\lambda-\lambda^{\prime}\right|\right) / 2} & {\left[\frac{(J+M)!(J-M)!}{(J+N)!(J-N)!}\right]^{\frac{1}{2}}\left(\frac{1-z}{2}\right)^{\left|\lambda-\lambda^{\prime}\right| / 2} } \\
& \left.\times\left(\frac{1+z}{2}\right)^{\left|\lambda+\lambda^{\prime}\right| / 2}{ }_{F}^{\left|\lambda-\lambda^{\prime}\right|\left|\lambda+\lambda^{\prime}\right|_{(z)}} \right\rvert\, \tag{2.19}
\end{align*}
$$

where $P_{c}^{a b}(z)$ is a Jacobi polynomial and

$$
N \equiv \min \left\{|\lambda|,\left|\lambda^{+}\right|\right\} .
$$

The polynomial is of course analytic in z so the only siagularitses stem from the 'half angle factor'

$$
\begin{equation*}
\xi_{\lambda \lambda^{\prime}}(z)=\left(\frac{1-z}{2}\right)^{\left|\lambda-\lambda^{\prime}\right| / 2}\left(\frac{1+z}{2}\right)^{\left|\lambda+\lambda^{\prime}\right| / 2} \tag{2.20}
\end{equation*}
$$

Note that here we are using the phase convention of Edmonds [26]. The Rose [28] convention is also commonly insed and differs $f^{\prime}, \lambda(2.19)$ by a factor $(-1)^{\lambda-\lambda^{\prime}}$. The factor at the front of (2.19) is used to reflect the symmetry relations

$$
\begin{equation*}
d_{\lambda \lambda^{\prime}}^{J}(z)=(-1)^{\lambda-\lambda^{\prime}} d_{-\lambda-\lambda^{\prime}}^{J}(z)=(-1)^{\lambda-\lambda^{\prime}} d_{\lambda^{\prime} \lambda^{\prime}}^{J}(z) . \tag{2.21}
\end{equation*}
$$

Later we shall wish to make an analytic continuation of $d_{\lambda_{\lambda^{\prime}}^{\prime}}^{J}(z)$ in J, and for this purpose it is convenient to re-express (2.19) in a form which exhibits its J-plane stricture more explicitly,

$$
\begin{align*}
d_{\lambda \lambda}(z)=(-1)^{\left(\lambda-\lambda^{\prime}-\left|\lambda-\lambda^{\prime}\right|\right) / 2} & {\left[\frac{(J+M)!\left(J-M+\left|\lambda-\lambda^{\prime}\right|\right)!}{(J-M)!\left(J+M-\mid \lambda-\lambda^{\prime}\right)!!}\right]^{\frac{1}{2}} \frac{1}{\left|\lambda-\lambda^{\prime}\right|!} \xi_{\lambda \lambda^{\prime}}(z) } \\
& \times F\left(-J+M ; J+M+1,\left|\lambda-\lambda^{\prime}\right|+1 ; \frac{1-z}{2}\right) . \tag{2.22}
\end{align*}
$$

Since 'he hypergeometric function F is an entire function of J the only singularities stem from the square bracket. We shall also later need to make use of the fact that

$$
\begin{array}{r}
d_{\lambda \lambda^{\prime}}^{J}(z) \underset{z \rightarrow \infty}{\rightarrow}(-1)^{\left(\lambda-\lambda^{\prime}-\left|\lambda-\lambda^{\prime}\right|\right) / 2} \frac{2 J}{\left[(J+M)!\left(J-M+\left|\lambda-\lambda^{\prime}\right|\right)!(J-M)!\left(J+M-\left|\lambda-\lambda^{\prime}\right|\right)!\right]^{\frac{1}{2}}} \\
\quad \therefore \xi_{\lambda \lambda^{\prime}}(z)\left(\frac{z}{2}\right)^{J-M}+O\left(z^{J-M-2}\right) \ldots+\mathrm{O}\left(z^{-J-1}\right)+\ldots \quad \tag{2.23}
\end{array}
$$

so

$$
\begin{equation*}
d_{\lambda \lambda}^{J}(z) \sim\left(\frac{z}{2}\right)^{J} J>-\frac{1}{2} \quad \text { and } \quad\left(J-v^{\prime}\right) \neq \text { integer }<M \tag{2.24}
\end{equation*}
$$

where v is defined in (2.38).

2.4. Dispersion relations and the Froissari-Griöov projection

We have noted that the only singularities of (2.15) in z_{t}, and hence in s, stem from the half angle factor $\xi_{\lambda \lambda^{\prime}}\left(z_{t}\right)$. This singularity has a simple physical interpretation in that for forward scattering, for which $z_{t}=1, \lambda$ and λ^{r} are the projec. tions of the total angular momentum oi the initial and final states, respectiveiy, and so the amnlituse must yanish unless $\lambda=\lambda^{\prime}$ by angular momentum conservation. so if we define

$$
\begin{equation*}
\hat{A}_{H_{t}}(s, t) \equiv A_{H_{t}}(s, t) / 5 \lambda \lambda^{\prime}\left(\tau_{t}\right) \tag{2.25}
\end{equation*}
$$

$\hat{A}_{H_{t}}$ will be free of kinematical singularities in s (and u). It will, however, contain dynamical s-singularities corresponding to the s (and u) charnel bound states, threshold branch points, etc., which result in the breakdown of (2.15). Thus, if we want to make an analytic continuation including these singularities, $\hat{A}_{H_{t}}$ is a suitable amplitude in which to write dis,ersion relations in s (at fixed t, viz.

$$
\begin{equation*}
\hat{A}_{H_{t}}(s, t)=\frac{1}{\pi} \int_{s_{0}}^{\infty} \frac{D_{s H^{\prime}}\left(s^{\prime}, t\right)}{s^{\prime}-s} \mathrm{~d} s^{\prime}+\frac{1}{\pi} \int_{u_{0}}^{\infty} \frac{D_{u D i}\left(u^{\prime}, t\right)}{u^{\prime}-u} \mathrm{~d} u^{\prime} \tag{2.26}
\end{equation*}
$$

where D_{S} is the discontinuity of A across the s-channel dynamical cuts (above the :-channel threshold s_{0}); and similarly for D_{u}. Bound state poles may be added to this expression if necessary.

As far as the t channel is concerned $D_{S H}$ contains the 'direct' forces, and $D_{u H}$ the 'exchange' or Majorana forces. If the integrals in (2.26) converge the scattering amplitude is completely determined by its dynamical singularities. I? general, however, the asymptotic s^{\prime} or u^{\prime} behaviour of D_{s} and D_{u} will be divergent for some t values, in which case the representation (2.26) is only defined up to the arbitrary subtractions needed to produce convergence. We shall see below how Regge theory serves to fix these subtractions, and hence completes the determination of A_{H} by its dynamical singularities.

Using the fact that (from the equivalent of (2.4) for z_{t})

$$
\begin{equation*}
s^{\prime}-s=2 q_{t 13} q_{: 24}\left(z^{\prime}-z_{t}\right) \quad \text { and } \quad u^{\prime}-u=-2 q_{t 13} q_{t 24}\left(z^{\prime}-z_{t}\right) \tag{2.27}
\end{equation*}
$$

the substitution of (2.26) into (2.17) gives

$$
\left.\begin{array}{rl}
A_{H,}(t)= & \frac{1}{32 r} \int_{-1}^{1} \mathrm{~d} z_{t} \mathrm{~d}_{\lambda \lambda^{\prime}}^{J}\left(z_{l}\right) \xi_{\lambda \lambda^{\prime}}\left(z_{t}\right)\left\{\frac{i}{\pi} \int_{z_{0}}^{\infty} \frac{D_{s H^{\prime}}\left(s^{\prime}, t\right)}{z^{\prime}-z} \mathrm{~d} z^{\prime}\right. \\
& +\frac{1}{\pi} \int_{-z_{0}}^{\infty} \frac{D_{\mu H^{\prime}}\left(u^{\prime}, t\right)}{z^{\prime}-z} \mathrm{~d} z^{\prime} \tag{2.28}
\end{array}\right\} .
$$

We now introduce the 'second type' functions corresponding to the $d_{\lambda \lambda}^{d}$, with the definition [29, 30]

$$
\begin{align*}
& e_{\lambda \lambda^{\prime}}^{J}(z)=(-1)^{\left(\lambda-\lambda^{\prime}-\left|\lambda-\lambda^{\prime}\right|\right) / 2}(-1)^{\lambda-\lambda^{\prime}}\left[\frac{(J+M)!(J-M)!}{(J+M)!(J-N)!}\right]^{\frac{1}{2}} \xi_{\lambda \lambda^{\prime}}(z) \\
& \times Q_{\frac{1}{J-M}}^{\left|\lambda-\lambda^{\prime}\right|}\left|\lambda+\lambda^{\prime}\right|_{(z)} \tag{2.29}
\end{align*}
$$

where the $Q_{c}^{a b}$ are the second type Jacobi functions. (These talse the place of the secona type Legendre functions $Q_{l}(z)$ in spinless particle scatiering.). The d 's and e 's are related for integer ($J-M$) by the 'generalized Neumanin relation' [29]

$$
\begin{equation*}
\xi_{\lambda \lambda^{\prime}}(z) e_{\lambda \lambda^{\prime}}^{J}(z)=\frac{1}{2} \int_{-1}^{1} \frac{\mathrm{~d} z^{\prime}}{z-z^{\prime}} d_{\lambda \lambda^{\prime}}^{J}\left(z^{\prime}\right) \xi_{\lambda \lambda^{\prime}}\left(z^{\prime}\right) \tag{2.30}
\end{equation*}
$$

When this is substituted in (2.28) we end up with the Froissart-Gribov projection

$$
\begin{align*}
& A_{H J^{\prime}}(t)=\frac{1}{16 \pi^{2}} \int^{\infty} \mathrm{d} z_{t}\left\{\nu_{s H^{\prime}}(s, t) e_{\lambda \lambda^{\prime}}^{J}\left(z_{t}\right) \xi_{\lambda \lambda^{\prime}}\left(z_{t}\right)+(-1)^{J-\lambda}\right. \\
&\left.D_{u H^{\prime}}(s, t) \mathbb{R}_{\lambda-\lambda^{\prime}}^{J}\left(z_{t}\right) \xi_{\lambda-\lambda^{\prime}}\left(z_{t}\right)\right\}, \tag{2.31}
\end{align*}
$$

where we have used [29]

$$
\begin{equation*}
e_{\lambda \lambda^{\prime}}^{J}(-z)=(-1)^{J-\lambda+1} e_{\lambda-\lambda^{\prime}}^{J}(q) \tag{2.32}
\end{equation*}
$$

to obtain the second teria. Since we can rewrite (2.29) in terms of the hypergeometric function as

$$
\begin{align*}
e_{\lambda \lambda^{\prime}}^{J}(z) & =(-1) \\
& \times \xi_{\lambda \lambda^{\prime}}^{-1}\left(z-\lambda^{\prime}-\left|\lambda-\lambda^{\prime}\right|\right) / 2 \frac{1}{2}\left(\frac{z-1}{2}\right)^{-J-1+M} F\left(J-M+1, J-M+\left|\lambda-\lambda^{\prime}\right|+1,2-J+2, \frac{2}{1-z}\right) \tag{2.33}
\end{align*}
$$

and since the asymptotic behaviour of the hypergeometric function as $z \rightarrow \infty$ is 1 , we get

$$
\begin{equation*}
\mathfrak{e}_{\lambda \lambda^{\prime}}^{J} \cdot(z) \underset{z \rightarrow \infty}{\rightarrow}(-1)^{\left(\lambda-\lambda^{\prime}\right) / 2} \frac{1}{(2 J+1)!}[(J+M)!(J-M)!(J+N)!(J-N)!]^{\frac{1}{2}} \frac{1}{2}\left(\frac{z}{2}\right)^{-J-1} \tag{2.34}
\end{equation*}
$$

so if $A_{H}(s, t) \sim z_{t}^{\delta(t)}$ for some value of t, then $D_{H} \sim z_{t}^{\delta(t)-M}$ and so the integral in (2.31) converges provided

$$
\operatorname{Re} J>\delta(t)
$$

We shail discuss the continuation to $\operatorname{Re} J<\delta(t)$ below. It is the presence of these divergences which requires the subtractions referred to above.

The symmetry relation

$$
\begin{equation*}
e_{\lambda \lambda^{\prime}}^{J}(z)=(-1)^{\lambda-\lambda^{\prime}} e_{\lambda \lambda^{\prime}}^{-J-1}(z), \quad J-v=\text { half odd integer } \tag{2.35}
\end{equation*}
$$

will be needed later.

25. Signature

Unfortunately (2.31) is not a suitable expression for continuation in J because of the $(-1)^{J-\lambda}$ factor in the second term. For large J the asymptotic behaviour of e is [29-31]

$$
\begin{equation*}
e_{\lambda \lambda^{\prime}}^{J}(z) \quad \underset{J \rightarrow \infty}{\rightarrow} \quad\left(\frac{\pi}{2}\right)^{\frac{1}{2}} \frac{\mathrm{e}^{ \pm \frac{1}{2} i \pi\left(\lambda-\lambda^{\prime}\right)}}{J^{\frac{1}{2}}} \frac{1}{\left(z^{2}-1\right)^{\frac{1}{4}}} \mathrm{e}^{-\left(J+\frac{1}{2}\right) \xi(z)} \tag{2.36}
\end{equation*}
$$

$$
|\arg J|<\pi
$$

where $\xi(z) \equiv \log \left[z+\left(z^{2} .1\right)^{\frac{1}{2}}\right]$ and we take \pm for $\operatorname{Im} z \gtrless 0$. So, ar long as the integral converges, the first term in (2.31) behaves like

$$
\begin{equation*}
\underset{J \rightarrow \infty}{\sim} \frac{e^{-\left(J+\frac{1}{2}\right) i \xi\left(z_{\infty}\right)}}{J^{\frac{1}{2}}} \rightarrow 0 \tag{2.37}
\end{equation*}
$$

but the second behaves like $\mathrm{e}^{\mathrm{i} \pi(J-\lambda)} \times(2.37)$, and so oscillates as $e^{-} \rightarrow \infty$.
Carlson's theorem [32] tells us that if $f(J)$ is a regular function of J and of the form O ($\mathrm{e}^{k}|J|$, where $k<\pi$ for $\operatorname{Re}(J) \geqslant 0$, then $f(J)$ is uniquely determined for all J by its values at positive integer J. This condition is satisiried by (2.37), but not by the second term of (2.31). To circumvent this difficulty, which is nut present in petential scattering with only direct forces, we construct from $A_{H}(s, t)$ amplitudes of definite signature, $d= \pm$, in the t channel, by replacing $(-1)^{\mathcal{J}} \boldsymbol{v}$ with ± 1, where

$$
\begin{equation*}
v=0, \frac{1}{2} \text { for physical } J=\text { integer, or half odd integer } \tag{2.38}
\end{equation*}
$$

so

$$
\begin{align*}
A_{H \cdot f}^{\sim}(i)=\frac{1}{16 \pi^{2}} \int_{z_{0}}^{\infty} \mathrm{d} z_{t}\left[D_{s H}(s, t) e_{\lambda \lambda^{\prime}}^{J}\left(z_{i}\right) \xi_{\lambda \lambda^{\prime}}\right. & \left(z_{i}\right)+o(-1)^{\lambda-v} \\
& \left.\times D_{u H^{\prime}}(s, t) e_{\lambda-\lambda^{\prime}}^{J}\left(z_{t}\right) \xi_{\lambda-\lambda^{\prime}}\left(z_{t}\right)\right\} \tag{2.39}
\end{align*}
$$

The $A_{H J}^{\sigma}(t)$ coincide with the physical $A_{H I} y^{\prime}(t)$ values for $y-v$ even/odd. So we can write

$$
\begin{equation*}
A_{H_{t}}(s, t)=16 \pi \sum_{J=M}^{\infty}(2 J+1)\left[A_{H J}^{+}(t) d_{\lambda \lambda^{\prime}}^{+}(J, z)+A_{H J}^{-} d_{\lambda \lambda^{\prime}}^{-}(J, z)\right], \tag{2.40}
\end{equation*}
$$

where we have defined

$$
\begin{equation*}
d_{\lambda \lambda^{\prime}}^{J}(J, z) \equiv \frac{1}{2}\left[d_{\lambda \lambda^{\prime}}^{J}(z)+\sigma(-1)^{\lambda-v} d_{\lambda-\lambda^{\prime}}^{J}(-z)\right] \tag{2.41}
\end{equation*}
$$

$d_{\lambda,}^{ \pm},(J, z)$ vanishes for $J-v$ even/odd since [26]

$$
\begin{equation*}
d_{\lambda-\lambda^{\prime}}^{J}(-z)=d_{\lambda \lambda^{\prime}}^{J}(z)(-1)^{J-\lambda} \quad \text { for } \quad J \geqslant M^{\prime} \tag{2.42}
\end{equation*}
$$

Thus A^{+}contains the even part of A in z, and A^{-}the odd part, though seither need be purtly even ar cdd. The physical J values of $A_{H}^{t}(t)$, i.e. $J-v=$ even/oda integer, are known as 'right-signature' values of J, while the odd/even vaiues are callea 'wrong signature'.

As a result of Carlson's theorem, (2.39) gives us a unique definition of $A_{H{ }^{\prime}}$ for all I values for which the Froissart-Gribov projection is defined, i.e. all $\operatorname{Re} J \geqslant \delta(t)$, which may now include $\operatorname{Re} J<M$.

We have noted in section 2 that physical amplitudes must have $J \geqslant M$ since for the incoming channel only $J \geqslant|\lambda|$ is allowed, and for the outgoing only $J \geqslant|\lambda \cdot|$. Amplitudes with integer $J-v$ and $J \geqslant M$ are known as 'sense-sense' (ss) amplitudes. When we make the analytic continuation we may also become involved with amp itudes having integer $J-v$, but with $N \leqslant J<M$. These are known as 'sense-
 make physical sense. Similarly integer $J-v$ with $J<N$ are knncin as 'nonsensenonsenst' (nn) amplitudes. We shall irequently use this notation below, sometimes referring to all integer $J-v, J<M$ as nonsense values.

2.6. Parity

An urfortunate complication of our formalism stems from the fact that two par-
ticle helicity states of definite J and m_{y} are not parity eigenstates. Rather under the parity operator P we find [21]

$$
\begin{equation*}
P\left|J m_{J} \lambda_{1} \lambda_{3}\right\rangle=\eta_{1} \eta_{3}(-1)^{J-\sigma_{1}-\sigma_{3}}\left|J M-\lambda_{1}-\lambda_{3}\right\rangle \tag{2,48}
\end{equation*}
$$

where η_{1} and η_{3} are the intrinsic parities of particles 1 and 3 . So deinite parity states are provided by the combinations

$$
\begin{equation*}
\left|\sigma m_{J} \lambda_{1} \lambda_{3_{ \pm}} \equiv 2^{-\frac{1}{2}}\left\{\left.\left|J m_{J} \lambda_{1} \lambda_{3}\right\rangle_{ \pm} \eta_{1} \eta_{3}(-1)^{\sigma_{1}+\sigma_{3}-v}\right|_{J} m_{J}-\lambda_{1}-\lambda_{3}\right\rangle\right\} \tag{244}
\end{equation*}
$$

So, assuming that parity is conserved in strong interactions, the scattering anmitude between such states is,

$$
\begin{align*}
&\left\langle\lambda_{2} \lambda_{4}\right| \cdot 4_{J}^{\sigma}(t)\left|\lambda_{1} \lambda_{3}\right\rangle \equiv\left\langle\lambda_{2} \lambda_{4}\right| A_{J}(t)\left|\lambda_{1} \lambda_{3}\right\rangle+\eta \eta_{1} \eta_{3}(-1){ }^{\sigma_{1}+\sigma_{3} v v} \\
& \times\left(\lambda_{2} \lambda_{4}\left|A_{J}(t)\right|-\lambda_{1}-\lambda_{3}\right\rangle \tag{2.45}
\end{align*}
$$

where $\eta= \pm$ for natural/unnatural parity. (A state $h \infty . . .$. . . parity if $P=(-1)^{d} \%$; These states are physical for $i-v$ even/odd, depending on the signature, so

$$
\begin{equation*}
P=\eta \sigma . \tag{2.46}
\end{equation*}
$$

We then define the so called 'parity conserving' helicity amplitute [33] free of kinematical s singularities by the rule

$$
\begin{align*}
& \left\langle\left.\lambda_{2} \lambda_{4}\right|^{\propto \eta}(s, t) \mid \lambda_{1} \lambda_{3}\right\rangle=\left\langle\lambda_{2} \lambda_{4}\right| A^{d}(s, t)\left|\lambda_{1} \lambda_{3}\right\rangle \xi_{\lambda \lambda^{\prime}}^{-1}\left(z_{t}\right) \\
& +\eta(-1)^{\lambda^{\prime}+M} \eta_{1} \eta_{3}(-1)^{\sigma_{1}+\sigma_{3}-\tilde{E}}\left\langle\lambda_{2} \lambda_{4}\right| A^{\sigma}(s, t)\left|-\lambda_{1}-\lambda_{3}\right\rangle \xi_{-\lambda \lambda^{\prime}}^{-1}(z) . \tag{2.47}
\end{align*}
$$

In torms of partial-wave aniplitudes this is

$$
\begin{align*}
& \times \eta_{1} \eta_{3}(-1)^{\sigma_{1}+\sigma_{3} \cdots} A_{\tilde{F} \sigma J}(t) \frac{d_{-\lambda \lambda}^{d}\left(z_{t}\right)}{\xi_{m \lambda \lambda} \cdot\left(z_{t}\right)}, \tag{2.48}
\end{align*}
$$

where $\bar{H} \equiv\left\{-\lambda_{1}-\lambda_{3}, \lambda_{2}, \lambda_{4}\right\}$; or, using (2.45),

$$
\begin{equation*}
\hat{A}_{H}^{\sigma \eta}(s, t)=16 \pi \sum_{J=M}^{\infty}(2 J+1)\left\{A_{H J^{\sigma}}^{\sigma} \eta_{\lambda \lambda^{\prime}}^{\alpha+}(J, z)+A_{H J}^{\left.\sigma-\eta^{\sigma}(v) a_{\lambda \lambda^{\prime}}^{\alpha-}(J, z)\right\}}\right. \tag{2.49}
\end{equation*}
$$

where we have defined

$$
\begin{equation*}
\hat{d}_{\lambda \lambda^{\prime}}^{\sigma \eta}(J, z)=\frac{1}{2}\left[\frac{d_{\lambda \lambda^{\prime}}^{d}(J, z)}{\xi_{\lambda \lambda^{\prime}}(z)}+\eta(-1)^{\lambda^{\prime}+M} \frac{d_{-\lambda \lambda^{\prime}}^{\sigma}(J, z)}{\xi_{-\lambda \lambda^{\prime}}^{(z)}}\right] . \tag{2.50}
\end{equation*}
$$

So partial waves of both parities contribute to the 'parity conseveing' anmiltudes in (2.49). But in the limit $z \rightarrow \infty$ we find, from (2.23)
so to leading order in z the d^{d+} dominates over the d^{d-} in (2.49), and so asymptotically only $A H_{H} \eta_{(t)}$ contributes to $A_{H}^{d} \eta_{i}(s, t)$. It is only in this asymptotic sense that our amplitudes are parity conserving

2.7. The Sommerfold-Watson transform

Having edablished the uniqueness of the analytic continadion on our signathed, parity conserving, partial-wave amplitudes, we can newrite the partial wave series (2.49) as a Cauchy integral
$\hat{A}_{H}^{d \eta}(s, t)=-\frac{16 \pi}{2 i} \int_{C_{1}} \frac{2 J+1}{\sin \pi\left(u^{j}+\lambda^{+}\right)}\left\{A_{H,}^{\sigma \eta}(t) \hat{d}_{-\lambda \lambda^{\prime}}^{d+}(j,-z)+A_{H J}^{\sigma-\eta}(t) \hat{d}_{-\lambda \lambda^{\prime}}^{(j,-z)}\right\} d^{J}$,
where the contour c_{1} encloses the veal axis for $J \geqslant M$, but avoids any simplarities
 coming from the resiaue of the poies of $\left[\sin \pi^{\prime}\left(J+\lambda^{\prime}\right)\right]^{-1}$ is cancelled.
ii we open up the contour to c_{2} as in $f \mathrm{fg}$. 4 we know that because of (2.37) the contribution of the semi-circle at ∞ will vanish, but we pich up contributions frcm the singularities of $A y$, and from the singularities of $\left[\sin \pi d+\lambda^{\prime}\right]^{-1} f 05$ o $<M$. The amplitude is expected to have poie aid branch pont singularities, and in we assume for simplicity that thexe is just one pole of tive form

$$
A_{H J}^{a t(b)}=\frac{B(t)}{d-C(D)}
$$

and one branch point at $J=\alpha^{f}(t)$ with the cut drawn as in \dot{d}. 4 . with wontinn $\Delta(J, i)$, we get

Fig. 4. The Sommerfeld Watson transform for a helicity ampitude witt Mr - 5 and γ In the complex f plana the contour of encloses the integer d values \rightarrow. When this ionfut is opened up to c_{2} we also collect distributions from the Fegge pole st afn, from the brame cut starting at the braneh-point $\alpha_{c}(t)$, and from the integer f values - $<\frac{1}{s}$ a

$$
\begin{align*}
& \hat{A}_{H}^{\sigma \eta}(s, t)=\frac{-16 \pi}{2 i} \int_{c_{2}} \frac{2 J+1}{\sin \pi\left(J+\lambda^{\prime}\right)}\{(2.52)\}-16 \pi^{2} \frac{3 \alpha(t)+1}{\sin \pi\left(\alpha+\lambda^{\prime}\right)} \beta_{H}^{\eta}(t) d_{-\lambda \lambda^{\prime}}^{\alpha}\left(\alpha,-2 t^{\prime}\right. \\
& -\frac{16 \pi}{2 \mathrm{i}} \int^{\alpha_{\mathrm{c}}(t)} \frac{2 J+1}{\sin \pi\left(J+\lambda^{\prime}\right)} \Delta(J, t) d_{-\lambda \lambda^{\prime}}^{d+}(J,-z) \mathrm{d} J \\
& -\sum_{J=N}^{M-1}-\sum_{J=v}^{N-1}\left[16 \pi(2 J+1)\left\{A_{H J}^{\eta}(t) \hat{d}_{\lambda \lambda^{+}}^{\sigma+}(J, z)+A_{H J}^{d-\eta}(t) \hat{d}_{\lambda \lambda^{\prime}}^{J-}(J, z)\right\}\right] . \tag{2.54}
\end{align*}
$$

Using the asymptotic form of $\hat{d}_{\lambda \lambda}^{\Delta \eta}(J, z)$ given in (2.51) we see that the first term in (2.54), the so called 'background integral', goes like $\sim\left(z_{t}\right)^{-\frac{1}{2}-M}$, and the pait term like $\sim\left(z_{t}\right)^{\alpha(t)-M}$. The behaviour of the cut term depends on the behaviour of the discantinuity $\Delta(J, t)$ at the branch point $J=\alpha_{\mathrm{c}}(t)$. If it is finite we get $\sim\left(z_{t}\right)^{\alpha}{ }^{(t)-M}\left(\log z_{t}\right)^{-1}$, while if Δ vanishes like $(J-\alpha)^{\delta}, \delta<0$, we have $\sim\left(z_{t}\right)^{\alpha_{c}(t)-M\left(\log z_{t}\right)^{-(1+}(\delta)}$. At the sn. points in the fourth term, $\left(J=J_{0}\right.$, where $J-v=$ integer with $N \leqslant J \leqslant M) d_{-\lambda \lambda}^{d}(J, z)$ vanishes like $\left(J-J_{0}\right)^{\frac{d^{3}}{3}}$ so this term will vanish unless $A_{H J} \sim\left(J-J_{0}\right)^{-\frac{1}{2}}$. We shall discuss this possibility further in section 9 but for the moment we assume that thi term vanishes. Similarly in the final term (at nn. puints $v \leqslant J_{0}<N$) tie leading power vanishes, and in fact (see 2.23) $a_{A l}^{J}(z) \sim(z)^{-J-1}$ so the asymptotic behaviour is $\left(z_{t}\right)^{-v-1-N!}$.

So we see that only the presence of the cut and pole singularities of $A_{H J}$ prevents the convergence of (2.39) for $-\frac{1}{2}<J \leqslant \delta(t)$. It is the principal hypothesis of Rezge theory - often called maximal analyticity of the second kind [10, 15] - that in continuing the partial-wave amplitudes the only singularities met are isolated poles (canled Regge poles) and branch points (Regge cuts). Thus $\delta(t)=\alpha_{M}(t)$ where $g_{\mathrm{g}}^{\mathrm{g}}(\boldsymbol{f})$ is the rightmost f-plane singularity. And the 'undetermined subtractions' in dispersion relations like (2.26) are now dentified as Regge poles and cuis. We have already mentioned that these singularities have a physical interpretation as the exchange of composice particles. Hence if all the particles in strong interaction physics are composite, i.e. they all correspond to Regge poles, there should be no arbitrary parameters left in the S-matrix. It is on this hyothesis that the bootstrap philosophy is based. (See e.g. refs. [10, 11, 15].)

There is no special significance about the line Re $J=-\frac{1}{2}$ in (2.54); it was chosen simpiy because, as we see from (2.23), it coincides with the most convergent behaviour of $d_{\lambda \lambda^{\prime}}^{J}(z)$. Mandelstam [34] has shown how one can continue (2.54) below this line by making the replacement [30]

$$
\begin{equation*}
\frac{\pi d_{\lambda \lambda^{\prime}}^{J}(z)}{\sin \pi\left(J+\lambda^{\prime}\right)}=\frac{e_{2 \lambda^{\prime}}^{J}(z)}{\cos \pi\left(J+\lambda^{\prime}\right)}-\frac{e_{-\lambda-\lambda^{\prime}}^{-J-1}\left(\alpha^{\prime}\right)}{\cos \pi\left(J+\lambda^{\prime}\right)} \tag{2.55}
\end{equation*}
$$

in (2.49). We define, in analogy with (2.41) and (2.50),
where we use \pm for $\operatorname{Im} z \geqslant 0$. From (2.34) we see that $e_{-\lambda-\lambda^{\prime}}^{-J}(z)$ has the asymptotic z behaviour of $d_{\lambda \lambda^{\prime}}(z)$, and that $e_{\lambda^{\prime}}^{j}(z) \sim z^{-y m}$. So we perform the SommerfeldWatson trensform for each term in (2.56) separately, and displace the contour to Re $j<-k$. Then we replace J by $-J-1$ in the second term, and note that the symmetry (2.35) implies that, irom the projection (2.39),

$$
\begin{equation*}
A_{H j}^{s \eta}(t)=(1)^{\lambda-\lambda^{\prime}} A_{H-J-1}^{d} \eta(t) \text { for half cod integer }(j-v) \text {, } \tag{2.57}
\end{equation*}
$$

where $y^{\prime}=a$ for $v=0$ and $b^{\prime}=-\sigma$ for $v=\frac{1}{2}$. Hence we find that the contributions irom the poles of $\left[\cos \pi\left(J+\lambda^{\prime}\right)\right]^{-1}$ at all integers $-h \leqslant J<M$ cancel pairwise bem tween the two terms in (2.56). A similar cancellation oceurs from the manerbutions in (2.54), and we are left with

$$
\begin{align*}
\hat{A}_{H}^{d \eta}(c, t)=16 \pi(2 \alpha(t) & +1) \beta_{H}(t) \frac{\hat{e}_{\lambda-\lambda^{\prime}(-\alpha-1,-z)}^{\alpha^{\prime}+}}{\cos \pi\left(\alpha+\lambda_{!}^{\prime}\right)} \\
& +\frac{16}{2 i} \int^{\alpha_{c}(t)} \frac{(2 J+1)}{\cos \pi\left(J+\lambda^{\prime}\right)} \Delta(J, i) e_{\lambda-\lambda^{\prime}}^{\sigma^{\prime}+(-d-1,-z) \mathrm{c} J} \\
& \quad+\text { inxed poles }+ \text { background integral }, \tag{2.58}
\end{align*}
$$

where the background integrai $<\mathrm{O}\left(z^{-k}\right)$.
The background can thus be pushed back as far as we like, exposing Regge poles and cuts, plus possible fixed poles which we shall discuss below.

2.8. Restrictions on Regge singulariti ss from unitarity

Though there is a great deal of fre dom in the types of singularities which can appear in the complex J-plane, there are some very important restrictions which stem from unitarity, navely the Froissart bound, the absence of fixed poles except in association with cuts, and the factiriation of the pole residues. We discuss each of these briefly.

Froissart [35] has shown that if the stronginteraction forces are of finite range then s-channe' partial-wave unitarity imposes the restriction [1E]

$$
\left|\dot{A}_{H}(s, t)\right| \underset{s \rightarrow \infty}{\leqslant} \text { constant } \times s \log ^{2} s \text { for } t=0
$$

 factora) we see that, for all $t \leqslant 0, \alpha_{M}(t) \leqslant 1$. This means that if he:
Regge poles or cuts with $\alpha(t)>1$ for $l<0$ they must move with to $t \in i$ under uns bound for $t<0$. An elementary partiole of spin σ would give rise to a contribution

$$
\begin{equation*}
A_{H J}(t)=\frac{g}{t}_{t-m^{2}}^{\xi^{2}} / \sigma \tag{2,60}
\end{equation*}
$$

in a Lagrangian field theory, and so its asymptotic behaviour $A_{H}(s, \eta) \sim s^{\pi}$ would violate the bound for $\sigma \geqslant 1$. This implies the compositeness of all particles with $\sigma \geqslant 1$.

The t-channel partial-wave unitarity condition for elastic scattering $13 \ldots$ is reads isee e.g. ref. [15])
where $\rho(t) \equiv 2 q_{i 13} i^{-\frac{1}{2}}$ is the kinematical factor, and we have defined

$$
B_{H J J}^{d}(t) \equiv A_{H J}^{d}(t)\left(q_{t} 13\right)^{-2 L}
$$

where L is the orbital angular momentum at threshold to (see (4.2), is and it are
evaiuated above and below the unitary cuts, end t_{I} is the inelastic threshold. Using the real analyticity of $B_{H J^{\prime}}^{J}(t)$, i.e. $\left[B_{i f J^{*}}\left(t_{+}\right)\right]^{*}=B_{H J}\left(t_{m}\right)$ (where $* \approx$ complex conju:gate) we may rewrite (2.61) as

$$
\begin{equation*}
B_{H J}^{\delta}(t)-B_{H J^{*}}^{\Delta}(t)^{*}=21\left(q_{t 13}\right)^{2 L} \rho(t) B_{H J^{*}}^{\sigma}(t)^{*} B_{H J}^{J}(t) \tag{2.63}
\end{equation*}
$$

Since the B_{H}^{G} satisfy the conditions for Carlson's theorem so do both sides of this eque.tion, which may thus be continued in J.

It is immediately apparent from (2.61) that there can not be a fixed J-plane pole of E_{H}^{\prime}, i.e. one whose position is independent of t, since if we put $B_{H J}{ }^{(t)}=$ $\beta(J, t)\left(J-J_{0}\right)^{-1}$ we have only a single pole at J_{0} on the left, but a double one on the right. The only way in which this could be avoided would be if we has a d-plane cut passing through $J=J_{0}$ fcr all t for which the unitarity equation holds. Then we would approach this cut on different sides in B and B^{*}, and the pole could be present on one side and not the other. On the other hand a moving pole at $J=\alpha(t)$ can perfectly well satisfy (2.63). So we conclude that in the absence of cuts all poles must be moving poles. It is aiso evident that we cannot satisfy (2.63) for real t with $\operatorname{Im} \alpha(t)=0$, so a Regge pole can not cross the real J axis for real t.

Above the inelastic threshold, or in the presence of spin, the unitarity equation becomes a matrix equation [15] (the rows and columns representing the various open channels)

$$
\begin{equation*}
B_{J}^{\sigma}(t)=B_{J^{*}}^{d}(t)^{+}=2 \mathrm{i} B_{J^{*}}^{\sigma}(t)^{+} \varrho_{J}(t) B^{J}(t), \tag{2.64}
\end{equation*}
$$

where $+\equiv$ Hermitian conjugate, ir ϱ_{J} is a diagonal matrix of kinematical factors for the various channels. A fixed he at J_{0} on the real axis of the form $B_{J}^{d}(t)=$ $\beta(J, t)\left(J-J_{0}\right)^{-1}$ implies $\beta\left(\mathcal{J}_{0}, t\right) \beta^{+}\left(J_{C}, t\right)=0$ so $\beta=0$, i.e. there is no pole. Sut if J_{0}. is off the real axis we simply have $\beta\left(J_{0}, t_{+}\right\rangle \beta\left(J_{0}, t_{-}\right)=0$ which does not imply $\beta=0$. So fixed poles are allowed but not on the real axis.

Finally, we can write the unitarity equation for the many-channel partial-wave S-matrix as

$$
\begin{equation*}
S(J, t) S^{+}\left(J^{*}, t\right)=1 \quad \text { or } \quad S(J, t)=\frac{\operatorname{cof}\left(S^{\dagger}\right)}{\operatorname{det}\left(S^{+}\right)} \tag{2.65}
\end{equation*}
$$

So if we consider a two-channel process this becomes

$$
\left(\begin{array}{ll}
s_{11} & s_{12} \tag{2.66}\\
S_{21} & S_{22}
\end{array}\right)=\frac{\left(\begin{array}{cc}
s_{22^{*}} & -S_{21^{*}} \\
-S_{12^{*}} & S_{11^{*}}
\end{array}\right)}{\left(s_{11^{*}} S_{22^{*}-}-s_{12^{*}}{ }_{21^{*}}\right)}
$$

Then if has a pole of the form $S=\beta(J-\alpha)^{-1}$, the va. ishing of the denominator of (2.66) implies that this residue must satisfy

$$
\beta_{22} \beta_{11}=\beta_{12} \hat{\beta}_{21},
$$

from which it follows that we can write

$$
\begin{equation*}
\beta_{i j}=\gamma_{i} \gamma_{j}, \tag{2.67}
\end{equation*}
$$

so the residue factorizes. A generalization of this result to an arbitrary number of channels was given by Charap and Squires [36] (see also ref. [37]).

The meaning of (2.67) is intuitively fairly obvious. If we consider a single-partcle exchange diagram such as fig. 1 the pole is simply a product of two factor 3 , one
associated with each vertex. Note that this result serves both to relate the residues of the various helieity amplitudes for a given process, and those of different processes.

2.․ Fixed J-plane sisgularities and SCR

The second type rotation function $e_{\lambda \lambda}^{J}$, which we used to define the partial-wave anplitudes in (2.39) has the J-plane singularities exhibited in (2.33). Since x ! has a pole for $x=-1,-2, \ldots$, and F is an entire function of J, we find that for integer $J_{\mathrm{c}}-v$

$$
\begin{align*}
e_{\lambda \lambda^{\prime}}^{J}(z) & \sim\left(J-J_{0}\right)^{-\frac{\pi}{2}} & N \leqslant J_{0}<M & \text { and }
\end{align*} \quad-M \leqslant J_{0}<-N
$$

and for $J<-M$ for example the residue of the pole is just $d_{\lambda \lambda}^{J},(z)$ (see 2.g. refs. [30, 3i]). So we obtain
$A_{H J}^{d}(t) \approx \frac{1}{J-J_{0}} \frac{1}{16 \pi^{2}} \int^{\infty} \mathrm{d} z_{t}{ }^{〔} D_{s H}(s, t) \xi_{, \lambda_{\cdot}}\left(z_{t}\right) d_{\lambda \lambda^{\prime}}^{J_{0}}\left(z_{t}\right)+o(-1)^{\lambda-v}$

$$
\begin{equation*}
\times D_{u H^{(s, t)}}\left(\xi_{\lambda-\lambda^{\prime}} d_{\lambda-\lambda^{\prime}}^{J_{0}}\left(z_{t}\right)\right\} \tag{2,69}
\end{equation*}
$$

for $J \approx J_{0}<-M$. Thes fixed, real axis J-plane singularities, which appear at all the nonsense points of the amplitude (in the nomenclature of sition 5) ate in cu:flict witi uur discuss: on in the previnus section, so we concly de that in the absence of cuts the integral (2.69) must varish like ($J-J_{0}$). This integral relationship is known as a superconvergence relaiion (SCR). The satirfaction of such SCR allows us to conclude that $A_{H J}^{d}(t) \sim\left(d-j_{0}\right)^{\frac{1}{2}}$ for sn points so the four h term 0,54 , be neglected. However $A_{H J}^{d}(t)$ still has square-root branch pcint at all $N \leqslant J_{0}<M$ and $-M \leqslant J_{0}<-N$, and it is often convenient to take these branch points to be joined pairwise by cuts running from $J=M-1-k$ to $-M+k ; k=0,1, \ldots, M-1$. In fact because of the unitarity equation each helicity amplitude will inherit the singularities of the others, so these cuts run from $J=\sigma_{\mathrm{T}}-1$ to $J=-\sigma_{\mathrm{T}}$ where $\sigma_{\mathrm{T}} \equiv$ $\max \left\{\sigma_{1}+\sigma_{3}, \sigma_{2}+\sigma_{4}\right\}$.

However, it was shown by Gribov and Pomeranchuk [38] that $A_{H J}^{\sigma}(t)$ must in fact have a pole th each wrong-signature nonsense point. This is because if one calculates the discontinuity of the partial-wave amplitude across the left-hand cut one obtains (see e.g. ref. [15])
$\operatorname{Im} A_{H J}^{\sigma}(t)=\frac{1}{32 \pi} \int_{-1}^{z t^{\left(s, t_{0}\right\rangle}} \mathrm{d} z_{t}\left\{D_{S M}(s, t) \xi_{\lambda \lambda^{\prime}}\left(z_{t}\right) A_{A \lambda^{\prime}}^{J}\left(z_{t}\right)+o(-1)^{\lambda-i}\right.$
$\left.\times D_{u H^{\prime}}(s, t) \xi_{\lambda-\lambda^{\prime}}\left(z_{t}\right) d_{\lambda-\lambda^{\prime}}^{J}(-z)\right\}+\frac{1}{16 \pi^{2}} \int \mathrm{~d} z_{i}^{\prime} \rho_{H}^{s u}\left(s^{\prime}, u^{\prime}\right) e_{\lambda \lambda^{\prime}}^{J}\left(z_{i}^{\prime}\right)\left[\frac{1-\sigma \mathrm{e}^{-i \pi\left(J-z^{\prime}\right)}}{2}\right]$.
This last term involving the 'third double suectral function', $\rho_{H}^{s u}(s, t)$, vanishes for physical J values, i.e. at right signature points, but is finite at wrong signature points. The $e_{\lambda \lambda}^{J}$, thus gives rise to singularities in im $A_{H J}$ at these points, as described ibove. Unlike the previous type of singularities, however, these Gribor-

Pomeranchuk singularities can not be made to disappear by an SCR, because it can be shown that at least for some t values the integral is to be evaluated only over the elastic double spectral function, which is always positive. So there is no change of sign of the integrand in (2.70), and the integral can not vanish. Because of unitarity these singularities, of the form $\left(J-J_{0}\right)^{-\frac{1}{2}}$ or $\left(J-J_{0}\right)^{-1}$, occur for all wrong signature $J=O T-k, k=2 ; 4,6 \ldots$ or $1,3,5 \ldots$.

In chapter 5 we shall see how these fixed singularities are shielded by moving cuts - indeed their presence is one of the principal arguments for the existence of cuts - and shows why the cuts depend on the presence of a third double spectral function. The second term of (2.70) is absent from potential scattering, or indeed any scaitering process which lacks an exchange force.

CHAPTER 3

REGGE TRAJECTORIES AND RESONANCES

3.1. Ir odection

In the previous chapter we showea now a scattering amplitude can be expressed in terms of its J-plane poles and cuts. The poles interpolate between resonant states o: increasing spin, and so in principle quite a lot can be learned about the behaviour of trajectories from an examination of the particle spectrum. In fact one can det ϵ mine both $\operatorname{Re} \alpha(t)$ and $\operatorname{Im} \alpha(t)$ at the physical points for $t>0$. Fine evidence is rathe" incomplete, but suggests that all the particles lie on rouzhiy straight trafectories of the form

$$
\begin{equation*}
\alpha(t)=\alpha_{0}+\alpha^{\prime} t \tag{3.1}
\end{equation*}
$$

and that the slopes α^{\prime} are more or less the same for all trajectrins. We shall see later that this behaviour is rather hard to understand from a theoretical point of view, however.

We begin by discussing the way in which a Regge trajectory gives rise to resonances, and some of the general properties of trajectory functions.

3.2. Regge poles and resonances

From (2.54) and (2.41) we can write the contribution of a Regge pole to a helicity amplitude as

$$
\begin{align*}
A_{H_{t}}(s, t) & =-16 \pi^{2}[2 \alpha(t)+1] \beta_{H^{\prime}}(t)\left[\frac{1+\sigma \mathrm{e}^{i \pi(\alpha-v)}}{2 \sin \pi\left(\alpha(t)+\lambda^{\prime}\right)}\right] d_{-\lambda \lambda^{\prime}}^{\alpha(t)}(-z t) . \tag{3.2}\\
& =-16 \pi^{2}[2 \alpha(t)+1] \beta_{H^{\prime}}(t)\left[\frac{\mathrm{e}^{-\mathrm{i} \pi(\alpha-v)}+\alpha}{2 \sin \pi(\alpha(t)-v)}\right] d_{\lambda \lambda^{\prime}}^{\alpha}\left(z_{t}\right) \tag{3.3}
\end{align*}
$$

where we have used (2.42). Evidently this expression has a pole in t whenever $\alpha(t)-v=$ even/odd integer, depending on $\alpha= \pm$. The factor $\left[e^{-\pi(\alpha-v)}+d\right]$ is known as the 'signature factor'. In the analytically continued partial-wave amplitude this pole takes the form (2.53)

$$
\begin{equation*}
A_{H J}^{\alpha}(t) \underset{J \rightarrow \alpha}{\approx} \frac{\beta(t)}{J-\alpha(t)} \tag{3.4}
\end{equation*}
$$

Above the t-channel threshold we expect $\alpha(t)$ to be complex, and so if, for some $t=t_{\mathrm{r}}$ (say), Re $\alpha\left(t_{\mathrm{r}}\right)-v=J_{\mathrm{O}}$ where $J_{\mathrm{O}}=$ even/odd integer, we get

$$
\begin{equation*}
A_{H_{0} J_{0}}^{s \eta}(t) \underset{t \rightarrow t_{\mathbf{r}}}{\approx \frac{\beta\left(t_{\mathbf{r}}\right)}{\left(t_{\mathbf{r}}-t\right)\left(\alpha_{\mathrm{R}}^{\prime}+\mathrm{i} \alpha_{\mathrm{I}}^{\prime}\right)-\mathrm{i} \alpha_{\mathbf{I}}\left(t_{\mathbf{r}}\right)} \approx \frac{\beta\left(t_{\mathbf{r}}\right) / \alpha_{\mathrm{R}}^{\prime}}{\left(t_{\mathbf{r}}-t\right)-\mathrm{i} \alpha_{\mathrm{I}}^{\prime} / \alpha_{\mathrm{R}}^{\prime}} \quad \text { if } \quad \alpha_{\mathrm{I}}^{\prime} \ll \alpha_{\mathrm{R}}^{\prime}, ~} \tag{3.5}
\end{equation*}
$$

where we have used the expansion

$$
\begin{equation*}
\alpha(t)-v \approx J_{0}+\alpha_{\mathrm{R}}^{\prime}\left(t-t_{\mathbf{r}}\right)+\ldots+\mathrm{i} \alpha_{\mathrm{I}}\left(t_{\mathbf{r}}\right)+\mathrm{i} \alpha_{\mathrm{I}}^{\prime}\left(t-t_{\mathbf{r}}\right)+\ldots \tag{3.6}
\end{equation*}
$$

the suffices R and I referring to the real and imaginary parts of α (for real t) respectively. If we put $r^{\prime} t_{\mathbf{r}}=M$, the resonance mass, and $r_{t}=E$, the centre of mass energy, (3.5) becomes

$$
\begin{equation*}
A_{H J_{\mathrm{O}}}^{\sigma \eta}(t) \approx \frac{\beta\left(M^{2}\right)}{(M-E)-\mathrm{i} \alpha_{\mathrm{I}}\left(M^{2}\right) / \alpha_{\mathrm{K}}^{\prime} 2 M} . \tag{3.7}
\end{equation*}
$$

This corresponds to a Breit-Wigner resonance of mass M and total width

$$
\begin{equation*}
\Gamma=\alpha_{\mathrm{T}}\left(M^{2}\right) / \operatorname{in}^{2} \mathrm{~K}^{n A} \tag{3.8}
\end{equation*}
$$

Thus if we find a resonance of $\operatorname{spin} J_{0}, \operatorname{mass} M$, and width Γ, we know that $\operatorname{Re} \alpha\left(M^{2}\right)=J_{0}$ and that $\operatorname{Im} \alpha\left(M^{2}\right)$ can be found from (3.8). In section 4 we shall use this information to plot the trajectories corresponding to the known resonances. Evidently the signature factor will cause the resonances on any given trajectory to be spaced by two units of angular momentum.

If $\alpha(t)-v$ passes through an integer below threshold, $\operatorname{Im} \alpha=0$. and so there is a bound-state pole on the real t axis.

3.3. Properties of the trajectery function

The known analyticity properties of the scattering amplitudes imply that certain restrictions must be satisfied by the trajectory functicns.

If $A_{H J}^{\delta}(t)$ has a pole at $J=\alpha(t)$ we have

$$
\begin{equation*}
\left[A_{H J}^{\rho}(t)\right]^{-1}-0 \quad \text { as } \quad J-\alpha(t) \tag{3.9}
\end{equation*}
$$

The implicit function theorem tells us that if $\left[A_{H J}^{d}(t)\right]^{-1}$ is regular in t at son:e $t=t_{\mathrm{r}}$ (say) and

$$
\begin{equation*}
\frac{\partial}{\partial J}\left[A_{H J}^{d}(t)\right]^{-1} \neq 0 \quad \text { at } \quad J=\alpha\left(t_{\mathrm{I}}\right) \tag{3.10}
\end{equation*}
$$

then $\alpha(f)$ is also regular at t_{r}. So we expect that $\alpha(t)$ will have ruts only where $\hat{A}_{\vec{H}, J^{(i)}}{ }^{(i)}$ does. We shall see in the next chapter that $\dot{A}_{\hat{H} J^{(i)}}$ has various kinematical singularities, but these are specific to a given helicity amplitude and so must be present in the residue of the pole. The same trajectory occurs in all those helicity amplitudes wnich are connected by unitarity. Hence $\alpha(t)$ inherits only the dynamical cuts of $A_{H, J}^{d}(t)$. These are of course a right-hand cut above the t-civanizel threshold t_{0}, and a leit-hand cut stemming from the s - and u-channe singularities We have seen in section 2.2 that the poles of $A_{H J}^{J}(t)$ some from the diver, ent behavijur of the integrand in (2.39) as $z_{i} \rightarrow \infty$ i.e. $s \rightarrow \infty$, and so the left-ha'd cut is
irrelevant in generating the singularity [15]. Hence the only dynamical singularity of $\alpha(t)$ is the right cut above t_{0}.

The significance of the condition (3.10), however, is that this theorem breaks down if $t \geqslant 0$ traje ories cross. Expanding [39] $\left[A_{H \alpha}^{\prime}(t)\right]^{-1}$ about $t \because t_{r}$ we have
$\left[A_{r_{r a}}(t)\right]^{-1}=a_{1}\left[\alpha(t)-\alpha\left(t_{r}\right)\right]+a_{2}\left[\alpha(t)-\alpha\left(t_{r}\right)\right]^{2}+\ldots+b_{1}\left(t-t_{r}\right)+b_{2}\left(t-t_{r}\right)^{2}+\ldots$
if t_{r} is a vegular point of $A_{H J}(t)$. So the condition for a pole (3.9) reads

$$
\begin{equation*}
\alpha(t)=\alpha\left(t_{1}\right)-\frac{b_{1}}{a_{1}}\left(t-t_{\mathbf{r}}\right)+\ldots \tag{3,12}
\end{equation*}
$$

so $\alpha(t)$ is analytic at t_{r} as expected. But if $\alpha_{1}=0$, i.e. $\{3.10$) does not hold, then

$$
\begin{equation*}
\alpha(t)=\alpha\left(t_{\mathrm{r}}\right) \pm_{.}\left(-b_{1} / a_{2}\right)^{\frac{1}{2}}\left(t-t_{\mathrm{r}}\right)^{\frac{1}{2}}+\ldots \tag{3.13}
\end{equation*}
$$

and two trajectories cross at $\alpha\left(t_{r}\right)$. But if $b_{1}=0$ there need not be a branch-puint, so the fact that two trajectories cross may, but need not, result in a branch-point occurring in each of the trajectory functions. The imaginary parts of the two trajectories contributions to the amplitude must be equal and opposite so that the amplitude itself is real for $s<t_{0}$. Otherwise there would be a violation of the Mandelstam representation.

So we can conclude that provided two trajectories do not cross the only singularities of $\alpha(t)$ will be a right-hand cut for $t>t_{0}$. We car thus write a dispersion integral of the form

$$
\begin{equation*}
\alpha(t)=\frac{1}{\pi} \int_{0}^{\infty} \frac{\operatorname{Im} \alpha\left(t^{\prime}\right)}{t^{\prime}-t} d t^{\prime} \tag{3.14}
\end{equation*}
$$

But of course (3.14) has only symbolic significance until we know the number of subtractions which are needed. We shall see that the experimental evidence seems to support a behaviour like $\operatorname{Re} \alpha(t) \approx c_{0}+\alpha^{\prime} t$ so (3.14) becomes

$$
\begin{equation*}
\alpha(t)=\alpha_{0}+\alpha^{\prime} t+\frac{1}{\pi} \int_{0}^{\infty} \frac{\operatorname{Im} \alpha\left(t^{\prime}\right)}{t^{\prime}-t} d t^{\prime} \tag{3.15}
\end{equation*}
$$

r it the integral may also diverge, in which case it should also be subtracted, and ree obtain instead

$$
\begin{equation*}
\alpha(t)=\alpha_{0}+\alpha^{\prime} t+\frac{t^{2}}{\pi} \int_{t_{0}}^{\infty} \frac{\operatorname{Im} \alpha\left(t^{\prime}\right)}{t^{\prime 2}\left(t^{\prime}-t\right)} \mathrm{d} t^{\prime} \tag{3.16}
\end{equation*}
$$

Note that for either (3.15) or (3.16)

$$
\begin{equation*}
\frac{\mathrm{d}^{n} \alpha}{\mathrm{~d} t^{n}}=\frac{n!}{\pi} \int_{t_{0}}^{\infty} \frac{\operatorname{lm} \alpha\left(t^{\prime}\right)}{(t-t)^{n+1}} \mathrm{~d} t^{+}, \quad r>1 \tag{3.17}
\end{equation*}
$$

Since we have seen in chapter 2 that $\operatorname{Im} \alpha$ can not change sign, but must remain positive, it is clear that for all $t<t_{0}$ all the derivatives of $c(t)$ will be positive, Thus $\alpha(t)$ is a Herglotz function for $t<t_{0}$. Of course this will not be true for col . liding trajectories with leit-hand cuts.

There are also two points about the threshold behaviour of the trajectories which deserve a brief mention. Above the thr ϵ shold for the elastic process $1+3 \cdots 1+3$ we have the unitarity relation (from (2.61))

$$
\begin{equation*}
\operatorname{Im}\left\{\left[B_{H J}^{\alpha}(t)\right]^{-1}\right\}=-\mathrm{i} \frac{2 q_{i} 13}{\sqrt{t}}\left(q_{t 13}\right)^{2 L} \tag{3.18}
\end{equation*}
$$

Since the position of the trajectory is given by $\left[B_{H J}^{J}(t)\right]^{-1}=0$ for $J=\alpha_{i}^{(t)}$, the threshold behaviour of (3.18) is reflected in $\alpha(t)[40,41]$. In section 4.2 w whall show that the orbital angular momentum at threshold is $L=J-Y_{13}$, where Y_{13} represents the mis-match between J and L, and is given in (4.3). It is found (see refs. [40,41$]$, or e.g. ref. [15]) that the resulting threshold behaviour of the trajectory is

$$
\begin{equation*}
\alpha(t)=\alpha\left(t_{0}\right)+a\left(-q_{t 13}^{2}\right)^{\left(\alpha\left(t_{0}\right)-Y_{1}{ }^{q+\frac{1}{2}}\right)} \quad \text { for } \quad \alpha\left(t_{0}\right)-Y_{13}>-\frac{1}{2} . \tag{3.19}
\end{equation*}
$$

Thus both the real and imaginary parts of the trajectory functions have the threshold behaviour $\left(q_{13}^{2}\right)\left(t_{0}\right)-Y_{13}{ }^{\frac{1}{2}}$. The generalization of this for any two-body threshold is obvious. However, it is found in potential scattering that such a tireshold behaviour is not important, and it is not evident in particle physics either.

The second point [42-44] is that as $\alpha\left(t_{0}\right)-Y_{13} \rightarrow-\frac{1}{2}$ the equation

$$
\begin{equation*}
\left(-q_{t 13}^{2}\right)^{J-Y_{13}+\frac{1}{2}}=\text { constant } \tag{3.20}
\end{equation*}
$$

is satisfied by $J=\alpha_{n}$ for any α_{n} such that

$$
\begin{equation*}
\left[\log \left(q_{t 13}^{2}\right)-\mathrm{i} \pi\right]\left[\alpha_{n}-Y_{13}+\frac{1}{2}\right]= \pm 2 \pi 2 \tag{3.21}
\end{equation*}
$$

or

$$
a_{n}=\frac{ \pm 2 \pi n}{\pi+\mathrm{i} \log \left(q_{t 13}^{2}\right)}+Y_{13}-\frac{1}{2} .
$$

Hence we expect that an infinite number of trajectories will accumulate at $\bar{J}=Y_{13}-\frac{1}{2}$ coming in from the complex plane as $\gamma_{t}^{2} 13-0$. These low-lying trajec. tories do not seem to have much piysical significance, but they serve as a warning against models which have only a small number of tuajectoris in the left-half d plane.

Fermion trajectories suffer a further complication. As we shall discuss in the next cappter, definite parity amplitudes corresponding to channels with odd fermion number are subject to a constraint at $t=0$. It is found that when the kincmatical singuiarities have been semoved such amplitudes are analytic in onci \because, and there is the relation (4.47)

$$
\begin{equation*}
\hat{A}_{H}^{\alpha \eta}(s, \sqrt{t})=(-1)^{\lambda-\lambda^{\prime}+1} \hat{A}_{H}^{\sigma-\eta}(s,-\sqrt{t!}, \tag{3.23}
\end{equation*}
$$

where, as before, $\eta= \pm$ refers to natural/unnatural parity. This result is a generalization of the well known MacDowell symmetry [45] of $\pi \mathrm{N}$ scattering. We shall see in chapter 4 that (3.23) is an example of a conspiracy relation.

In order to satisfy the relation we need two trajectories of opposite parity. $\alpha^{+}(\sqrt{ } t)$ and $\alpha^{-}(\sqrt{l})$ say, which. meet at $\sqrt{i}=0$ and are related by

$$
\begin{equation*}
\alpha^{+}(\sqrt{t})=\alpha(-\sqrt{t}) \quad \text { for } \quad t>0, \tag{3,24}
\end{equation*}
$$

the first containing particles of spin J and parity $(-1)^{\sqrt{-\frac{1}{2}}}$, and the second particles of parity $(-1)^{J+\frac{1}{2}}$. Of course if the trajectory takes the form

$$
\begin{equation*}
\alpha^{+}(\sqrt{t})=\alpha_{0}+\alpha^{1} \sqrt{t} \quad \text { with } \quad \alpha^{\prime}>0 \tag{3.25}
\end{equation*}
$$

there will be physical particles only on a^{+}and not on α^{-}. But if the trajectary is even in \sqrt{t}, such as

$$
\begin{equation*}
\alpha^{+}(\sqrt{t})=\alpha_{0}+\alpha^{\prime} t \tag{3.26}
\end{equation*}
$$

then $a^{ \pm}$coincide, and we expect the fermions to appear as parity doublets, coincident in mass. A morc general form such as

$$
\begin{equation*}
\alpha+(\sqrt{t})=\alpha_{0}+\alpha^{\prime} \sqrt{t}+\alpha^{\prime \prime t}+\ldots \tag{3.27}
\end{equation*}
$$

splits the degeneracy, but gives a curved trajectory.
The relation (3.13) also means that the dispersion relation for the trajectory function should be written in terms of \sqrt{t} rather than t, and in unsubtracted form it reads

$$
\begin{equation*}
Q(\sqrt{t})=\frac{1}{\pi} \int_{\sqrt{t_{0}}}^{\infty} \frac{\operatorname{im} \alpha\left(\sqrt{t^{\prime}}\right)}{\sqrt{t^{*}}-\sqrt{t}} \mathrm{~d}\left(\sqrt{t^{\prime}}\right)+\frac{1}{\pi} \int_{-\sqrt{t_{0}}}^{-\infty} \frac{\operatorname{Im} \alpha\left(\sqrt{t^{\prime}}\right)}{\sqrt{t^{\prime}}-\sqrt{t}} \mathrm{~d} \sqrt{t^{+}} \tag{3.28}
\end{equation*}
$$

so we need to kncw the imaginary parts in both 1 hysical regions of the trajectory. Subtractions may of course be needed as in (3.16).

34. The trajectories

a) Boson:s

The principal means that we have for classifying resonances is the $\operatorname{SU}(3)$ scheme $[46,47]$. All the well established meson resonances can be grouped into nonets consisting of an SU(3) singlet and an octet. The best established nonets have ${ }_{J} P C$ valuss $0^{-+}, 1^{-\infty}$, and 2^{++}though there are also $0^{++} 1^{++}$and 1^{+-}states of less certain status. Regge trajectories carry a given isospin I, hypercharge Y, baryon number B and $\eta= \pm$ (natural or ungatural parity), and p:oduce physical particles spaced by two units of angular momentum. So taken alone the above states give us just one particle on each trajectory, and do not give much idea of how to draw the trajectories.

There are however several additional features which enable us to make a 'Chew-Frautschi plot' of $\operatorname{Re} \alpha(t)$ versus t, such as fig. 5 , with a certain amount of confidence.

These are: a) For some trajectories such as those corresponding to the f, ρ and A_{2} we have a good idea from dits to high energy s-channel data what the value: of $a(t)$ are for $t<0$. b) There exists a certain number of higher mass states which fall naturally onto straight lines nrojected through the lower mass $\overline{\mathrm{r}}$ soñances even though their spins are not known. c) The evidence from those meson trajectories that we do know (and from the baryon trajectories) is that all trajectories are roughly straight and parallel. d) There is evidence for exchange degenericy i.e. for pairs of trajectories of opposite signature which lie essentially one on top of the other and so appear to be a single trajeccory with a particle at every integer value of d. This means for example the 1^{--}trajectories are approximately degenerate with the 2^{++}ones. This degeneracy will oc ur if the exchange force (the u

Fig. 5. A Chow-Frautschi plot of $\operatorname{Re} \alpha(t)$ against t for the well establisher meson resonances.
discontinui y in (2.39)) is very small so that there is at least an approximate equality betwees $A_{H}^{d}(b)$ and $A_{H J}^{-d}(b)$. There is no a priori reason why the effect of the u discontinuity should be small, but exchange degeneracy does seem to be in accordance with the facts as presented in fig. 5 .

This figure contains all the boson resonances of ref. [48] whose existence and quantum numbers are well established (though we have ignored the fact that the A_{2} seems to be spitit. There are however quite a lot of states whose existence is cuspected, or which certainiy exist but whose quantum numbers are undetermiried. and if one wishes to try and include these a speculative picture such as fig. 6 may result. (See also ref. [49].)
part of the motivation for this figure is that, as we soil discuss in later chapters, there are theoretical arguments in favour of the evistence of daughter tra-

Fig. 6. A sperulative Chew-Frautschi plot for the $I=1$ resonances. A empty circle ind cates that no appropriate state has been seen.
jectories which are spaced at integer units below the leading (parent) trajectory at $t=5$ i.e. for the nth daughter we have

$$
\begin{equation*}
\alpha_{n}(0)=\alpha(0)-n \quad n=1,2 \ldots \tag{3.29}
\end{equation*}
$$

Since all trajectories have $\alpha(0)<1$ (because of the Froissart bound) the daughters are always in the left-half δ-plare at $t=0$. However, if they rise parallel to the parents we should expect each partial wave to have a sequence of resonances separated by about $n\left(a^{\prime}\right)^{-1}$ in t from the parent. Note that this equal spacing in t neans that they get closer and closer together in mass ($=\sqrt{t}$). There is very little cencrete evidence for such a complex structure. This is not necessarily damning because we can not observe purely bosonic scattering processes and so all the resonances have to be looked for in production experiments rather than in formation ones. If one remembers the large number of new baryon resonances claimed by the partial-wave analysts in $\pi \mathrm{N}$ scattering, one may expect that there are many boson states, even of quite low mass, remaining undetected.

There are some notable absentees however. The most striking perhaps is the lack of a ρ ' resonance lying on the daughter of the ρ. This should have the rho quantum numbers and a mass of about 1250 MeV . Several experimenta have searched for such a state without success [50-52]. We shall see in the next chapter that there is no good reason why the daughters should remain parallel to the parents, however.

The only trajectory for which there is a large number of candidates is the $\rho-\mathrm{Ag}$ exchange degenerate trajectory. 'Missing mass' experiments [53], in which the recoil proton momentum is measured in reactions of the form $\pi^{-} p \rightarrow X p$ have identified a large number of n arow $I=1$ states for X. Unfortunately bubble cham* ber experiments inu: int been alle to confirm much of the structure [48], but if we

Fig. 7. A plot of $\operatorname{Re} \alpha$ and $\operatorname{lm} \alpha$ for the $\rho-A_{2}$ exchange degenerate trajectory as deduced from the missing-mass data of ref. [53].
take the states at their face we can draw an $I=$. trajectory as in fig. 7. Since the widths of the states are also roughly known one can deduce the corresponding $\operatorname{Im} \alpha$ from (3.8) Im α seems to fall for large t so we cari expect the ubsuhtracted integral (3.15) to converge. In fact the whole contribution of the integral is very small [54]. which may explain why the trajectory seems so straight.

In fig 5 there are no trajnctories with a(0) much above $J=\frac{1}{2}$, certainly none with $\alpha(0) \approx 1$. However it is well known that elastic scattering cross sections are roughly constant at high energies, and we shall see in the next chapter that if this is to be explained by Regge-pole exchange we need a Regge trajectory with 'vacuum' quantum numbers ($I=Y=B=0 \quad \eta=+$ and even signature) and $\alpha(0)=1$, i.e. saturating the Froissart bound. The first particle on suci a trajectory would obviously have spin 2 , and so the f wouid seem to be a good candidate. On the other hand exchange degeneracy seems to demand that the f trajectery be degenerate with that of the ω. This is consistent with fig. 5 , and we shall find that there are other theoretical grounds for such a deger eracy in chapter 6 .

In fact the need for: a vacuum trajector γ with $\alpha(0)=1$ was realized before any 2^{++}mesons were known, and so such a trajectory, called the Fomeranchon (for reasons which will be explained in chapter 7) was simply 'inverted' [55]. If such a t:ajectory exists and is parallel to the others we ex ort a vacu in 2^{++}particle with a mass about 1 GeV and there have been indications that such a parviclc may exist [56], but this is not certain. There is also evidence from fits to elastic scattering data (see chapter 7) that the slope of t'e Pomeranchon (P) may be smaller than other trajectories, in which case identification with the f is still possible. It could be so flat, or turn over so quickly, that it does not reach $J=2$, in which case no particle will be seen; or it may even be that there is no such trajectory aid elastic scattering requires something other than R rgge poles for its explanation. We shall see in chapter 6 that Regge cuts are likely to be important in elastic scattering. but it is hard to see how there could be cuts at $\mathrm{c}^{?}=1$ if there were no poles from which to generate them.

At present the nature of this Pomeranchon pole rema ns something of a mystery

b) Fermions

Baryons come in $\operatorname{SU}(3)$ singlets, octets and decuplets, and, partly through par-tial-wave analysis, a large number of low mass states are known [48]. At higher energies many non-strange states have been ideatified by observing peaks and dips in the forward and backward cross sections [57,58]. Thus the Chew-Frautschi plots shown in figs. 8-10 are a good deal more impressive than those for the bosuns. In particular the evidence for almost straight Regge trajectories of slope $\approx 1 \mathrm{GeV}^{-2}$ is very good. There is also some evidence for exchange degeneracy though there seems to be a systematic displacement betveen the even and oad sisnature octets.

In figs. 11 and 12 we have plotted the natural and unnatural parity traiectories against t. There is a paucity of unnatural parity states which is in total conflict with the MacDowell symmetry requirement (3.24). Since the trajectories are linear in t rather tha; \sqrt{t} we would expect to find degenerate parity coublets. One way du: of this difficulty is to suppose that for some reason the resitues of the odd pastiy trajectories vanish when α passes through a physical integer. In fact we shall see in chapier 7 that there is some evidence for such a behaviour from fits to backwari mes on baryon scattering. Howfver, it seems implausible that this should happen at every integer, so higher mass states are still expected. An alternative way out of this dilemma is discussed in hapter 5.

Fig. 8. The Chew-Frautschi plot for the nat:ral parity octet baryons.

Fig. 9. The Chew-Frautschi plot for the unnaturai parity de -uplet jaryons.

Fig. 10. The Chew-Frautschi plot for the natural paidy singlets.

Fig. 11. Octet states of both parities, showing the difficiency of unnaturai pari's states on the left-hand side.

Fig. 12. Decuplet states of both parities.

Since the widths of the baryon states are reasonably well known it is possible to determine Im α using (3.8). Some examples for the dominent trajectories are presented in fig. 13 [59]. Eviciently Im $\alpha(t)$ is a more or less linear function of t, but with a much smaller slope than Re α. If this behaviour is substituted in (3.16) we again find that the integral is very small, and the straightness of $R e \alpha$ is due to the dominance of the two subtraction terms.

Fig. 13. A plot of Im α against t for the two baryon trajectories which have the greatest number of established resonances.

If we wish to find the residue of the trajectory we need to know the elasticity of the resonance. (Remember in (3.8) Γ is the total decay width to all channels, not the partial decay width.) If we define the elastivity in terms of the decay width of the resonance to the elastic channel $\Gamma_{e l}$ as

$$
x \equiv \Gamma_{\mathrm{e}} / \Gamma
$$

the eiastic residue in $12 \rightarrow 13$ is then

$$
\beta_{\mathrm{el}}(t)=\frac{x \sqrt{t}}{2 q_{t 13}} \operatorname{Im} \alpha(t)
$$

So the behaviour of the esidue depends strongly on the behaviour of the elasticity as one goes up a trajectory. The evidence for baryon trajectories is that x is an exponentially decreasing function of t which we may write as

$$
\beta_{\mathrm{el}}(t) \underset{t \rightarrow \infty}{\approx} \text { const. }^{-d \operatorname{Re} \alpha(t)}
$$

where d is a constant ≈ 0.5. (See refs. [60, 61].)

CHAPTER 4
 PROPERTIES OF REGGE POLES

4.1. m.roduction

in the previous chapter we looked at the resonance interpretation of a Regge trajectory for positive energies. However, much more information can be obtained about a trajectory through its contribution to the asymptotic behaviour of the crossed-channel amplitude, for which we shall develop general expressions in this chapter.

First we discuss the kinematical singularities and zeros of the residue functions, which are required by the analytic properties of the helicity amplitudes. There are kinematical constraints on the helicity amplitudes which may require corresponding constraints in the residues of a given trajectory at the various thresholds and pseudothresholds. There are also constraints at $t=0$ between helicity amplitudes of different parities, and these may (but need not) require 'conspiracies' between trajectories of opposite parity.

Then in section 4 we briefly examine the problem of unequa: mass kinematics when the Regge pole terms have unwanted $t=0$ singularities. These may be cancelled by 'daughter' trajectories which are spaced at integel' units of angular momentum below the 'parent'. The conspiracy and daughter ideas lave also been examined by many authors from a group-theoretical viewpoint, and, although it does not add anything essential to the earlier discussions, we briefly review this approach in section 5.

The requirements on a Regge residue do not und with these kinematical considerations, however, for there are also co dition: on the behaviour of the residue function whenever a trajectory passes through a nonsense value of J. These are due to the peculiarities of the Froissart-Gribov projectir: at these points, and may (but need not) result in dips in various differential ress sections. These dips are one of the most interesting airects of Regge phenunenolog.

Because of the complexity of the singularities and constraints in iof a - hames. helicity amplitude, some authors have preferred to work with s-chanel anplitudes, which are free of them. We derive an approximate expression for a r-channel Regge pole in an s-channel helicity amplitude, valid to first order in t / s, in section 7.

With all these various factors accounted for we give a general prescipicen for the contribution of a Regge trajectory in section 8, and discuss some of its characteristic features, and experinental consequences. The readrr who is not concerned with the details may like to skip straight to this section, and refer back as necessary.

4.2. Kinematical singularitics and Regge residues

The residue of a Regge pole is given by (see (3.9))

$$
\beta_{H}(t)=\frac{1}{2 \pi \mathbf{i}} \int \mathrm{~d} J A_{H J}^{s}(t),
$$

where the integration contour is taken round the pole at $s=\alpha(t)$. It follows from (4.1) that $\beta_{H}(i)$ inherits the t singularities of $A_{H J}(t)$, except that (as we found for the trajectory function in section 3.3) there is no left-hand cut, and of course no pole $(J-\alpha(t))^{-1}$. Thus $\beta_{H}(t)$ will have both the dynamical right-hand cut of $A A_{j}(\vec{\prime})$.
begiming at the t-channel threshold, and also its kinematical t singularities. It is these kinematice 1 singularities which concern us in this section.

There have been many papers devoted to finding these singularities [23-25, 62] One method, devised by Hara [82] and fully exploited by Wang [23], uses the fact that the only kinematical t-singularities of the s-channel amplitudes stem from the half-angle factors $\xi_{\mu \mu}\left(z_{S}\right)$ (anaiogous to (2.20)). Hence the only other t-singularities of a t-chanael helicity amplitude are those arising from the helicity crossing matriy (2.12). Aiternatively general methods have been devised to construct invam iant amplitudes free of kinematical singularities (and constraints) which may then be relsited to helicity amplitudes [24-65]. This procedure is difficuit for high spir particles, though it is the usual method for πN and $K N$ scattering, and the photoproduction of pions. More recently a very simple and physical interpretation of these singularities has been given [25] and our (necessarily brief) account will exploit this sact. A good general account is that of ref. [64], and a good introductory review may be found in ref. [12].

For our general t-channel process $1+3 \rightarrow 2+4$ there may be kinematical singularities at the threshoids $t=\left(m_{1}+m_{3}\right)^{2}$ and $t=\left(m_{2}+m_{4}\right)^{2}$, and at the pseudothresholds $\left(m_{1}-m_{3}\right)^{2}$ and $\left(m_{2}-m_{4}\right)^{2}$, and at $t=0$. We assume initially that $m_{1}>m_{3}$ and $m_{2}>m_{1}$. Equal masses are considered later.

The threshold singularities stem from the threshold behaviour of the partialwave amplitudes. For example, if we consider the $1+3$ threshold the behaviour must be

$$
\begin{equation*}
A_{H J}^{\alpha / 1}(t) \underset{q_{13} \rightarrow 0}{\sim}\left(q_{13}\right)^{L_{m}} \tag{4.2}
\end{equation*}
$$

Ex+tar $\quad q_{13}$
Where L_{m} is the lowest possible orbital angular momentum given that J is the total angular momentum; i.e. we expect the usual non-relativistic behaviour. We would expect $L_{m}=J-\left(\sigma_{1}+\sigma_{3}\right)$ except that this value may be incompatible with the parity of the state, in which case we have to increase at by 1 . This condition may be written [25]

$$
\begin{equation*}
L_{m}=d-\left(\sigma_{1}+\sigma_{3}\right)+\frac{1}{2}\left[1-\eta \eta_{1} \eta_{3}(-1)^{\sigma_{1}+\sigma_{3}-v}\right] \equiv J-Y_{13}^{*}(\text { say }) \tag{4.3}
\end{equation*}
$$

But the behaviour ($\mathbf{4} .2$) is not automatically obtained from the Froissart-Gribov projection (as it would be for spinless scattering). Instead since

$$
\begin{equation*}
z_{t}=\frac{t^{2} \div 2 s t-t\left(m_{1}^{2}+m_{2}^{2}+m_{3}^{2}+m_{4}^{2}\right)+\left(m_{1}^{2}-m_{3}^{2}\right)\left(m_{2}^{2}-m_{4}^{2}\right)}{\left.4 t q_{t 13}^{q_{t}}\right)} \tag{4.4}
\end{equation*}
$$

and

$$
\begin{equation*}
a_{t 13}=\frac{\left[t-\left(m_{1}+m_{3}\right)^{2}\right]^{\frac{1}{2}}\left[t-\left(m_{1}-m_{3}\right)^{2}\right]^{\frac{1}{2}}}{2 t^{\frac{1}{2}}} \equiv T_{i s}^{+} T_{i 3}^{-}\left(2 t^{\frac{1}{2}}\right)^{-1}(\mathrm{say}) \tag{4.5}
\end{equation*}
$$

We find that as $t-\left(m_{1}+m_{3}\right)^{2}, q_{i} 18-0$ and $z_{i} \rightarrow \infty ;$ and so in $(2.39) e_{\lambda \lambda^{\prime}}^{J}\left(z_{t}\right)-z_{t}^{-J-1}$ from (2.34), and $\xi_{\lambda \lambda^{\prime}}\left(z_{t}\right) \sim z_{t}^{M}$, and $\mathrm{d} z_{i}=\mathrm{d} s\left(2 t q_{t 13} q_{t 24}\right)^{-1}$, giving

$$
\begin{equation*}
A_{H J}^{\sigma \eta}(t) \underset{q_{t 13} \sim 0}{\sim}\left(T_{13}^{+}\right)^{d-M} \tag{4,6}
\end{equation*}
$$

The discrepancy between (4.6) and (4.2) must already be present as a kinematical singularity in $A K_{t}(s, t)$, and hence in $D_{S i I}(s, t)$ in (2.39). S. we need

$$
A_{H_{t}}(s, t) \underset{r_{13}^{+} \rightarrow 0}{\sim}\left(T_{13}^{+}\right)^{M-\gamma_{13}^{+}}
$$

Similar remarks apply at the other thresholds and the pseudothresholds, except that the effective parity of the lighter particle (say $n n_{3}$) at the pseudothreshold is $[25] 7_{3}(-1)^{2 \sigma 3}$, so we end up with

$$
\left.A_{H_{t}}(s, t) \propto\left(T_{13}^{+}\right)^{M-Y_{13}^{+}}\left(T_{13}^{m}\right)^{M-Y} 13{ }_{\left(3_{24}^{+},\right.}\right)^{M-Y_{24}^{+}}\left(T_{24}^{-}\right)^{M-Y_{24}^{-}},
$$

where $Y_{13}=\sigma_{1}+\sigma_{3}-\frac{1}{2}\left[1-\eta \eta_{1} \eta_{3}(-1)^{\sigma_{1}-\sigma_{3}-2}\right]$, and Y_{13}^{\dagger} is detined in (4.3) above.
If say $m_{1}=m_{3} \equiv m$, then the pseudohtreshold moves to $t=0$, a point which wil be discussed later. Precisely similar conclusions hold if $m_{2}=m_{4}$. And, of course, if $m_{1}=m_{2}=m_{3}=m_{4}$ both pseudothresholds move to $t=0$.

These acts allow us to write the threshold behaviour for any masses in the form

$$
\begin{equation*}
A_{H J}^{\Delta \eta} \propto K_{\lambda \lambda^{r}}(t)\left(q_{t 13} q_{t 24}\right)^{J-M} \tag{4.5}
\end{equation*}
$$

wher $K_{\lambda \lambda^{\prime}}(t)$ is given in table 1 , and so from (4.1)
where $\vec{F}_{n}(t)$ is free of singularities at the tixesholds and rsmudormestrotas. the scale factor s_{0} is arbitrary, but is to be masured in th: sume units as $/ 03$ that the units of $\bar{\beta}_{H}(t)$ ean remain constant as $\alpha()$ varies. We shall discues his frewe in section 8 .

Uniortunately this does not exhaust the rroblea. connected with the thrcsion: because there are also constraints between the different helicity amplitudes at these points. This is because at threshold eniy the lowest allowed orbital state. $L=0$ or 1 , is non-vanushing, so the vanious partiai wave helicity amplitudes are related to each other (at least in the physicnl region) by the Clebsch-Gordan coelficients which connect them to this L state; 64, 64, 2]. These consiraints must aiso relate the residues of a given trajectory in te dif.erent holicicy amplitudes. They are important from a theoretical point of view because if a Regre coriribution is written v th the residues having the singularities of (4.10) but not the const aints, the resuiting differential cross section (2.14) will have kiaematical toringularinies We know such singularities should not occur because they can not present in $\{2.8\}$ In practice, however, the thresholds are usually rather far from the suchathe: physical region ($i<0$) where we are interested in using the formulae. and pra tical diffculties only arise in cases like $\pi \mathrm{N}-\pi \Delta$ where the $t=\left(m_{\mathrm{A}}-\mathrm{m}_{\mathrm{N}} \mathrm{N}^{2}\right.$ pseucothreshold is near to $t=0$.

These threshold constraints heve been derived by several aui ors $\{24,25,68-65\}$ and their implications for Regge theory have been extensirely discussed by Jackson and Hite [25]. Drobabiy the most elegant derivation is that due to Trueman [64]. which is reviewed with several useful examples in ref. [12]. Here we shall contert ourselves with giving just one illustrative example in detall, the thanmed amplitude for $\pi \pi-N T$.

Table 1

The threshold kinematical factor $K_{\lambda \lambda_{1}}(t)$.
a) $m_{1} \neq m_{2}, m_{3} \neq m_{4}$ (UU scattoring)
where

$$
\begin{aligned}
& \left.T_{i j}^{+}=\left[i-\left(m_{i}+m_{j}\right)^{2}\right\}^{\frac{1}{2}}: \quad T_{i j}^{-} \text {an }-\left(m_{i}-m_{j}\right)^{\mathrm{E}}\right]^{\frac{1}{2}} \\
& Y_{i j}^{: 2}=\sigma_{i}+\sigma_{j}-\frac{1}{2}\left[1-\eta \eta_{i} \eta_{j}(-1)^{\sigma_{i} \pm \sigma^{-v}}\right]
\end{aligned}
$$

where the σ_{i} is the particle spin, η_{i} the h_{i}-inste parity, and we are assuming $m_{j}<m_{i}$. The other cases cun bu obtained from tiv ay setting the masses equal and ignoring the paeudotheshold at $:=0$. thus
b) $m_{1}=m_{2}=m, m_{3} \neq m_{4}(E U)$

$$
\left.K_{\lambda \lambda^{\prime}}(t)=\left(-4 m^{2}\right)^{\frac{1}{2}\left(M-Y_{13}^{+}\right)}\left(T_{24}^{+}\right)^{M-Y_{24}^{4}} T_{24}^{-}\right)^{M-Y_{24}^{-}}
$$

where

$$
r_{13}^{+}=2 \sigma_{1}-\frac{1}{4}[1-\eta]
$$

c) $m_{1}=m_{2}=m_{;}=m_{4}=m(E E)$

$$
K_{\lambda \lambda^{\prime}}(t)=\left(t-4 n^{2, M-20}\right.
$$

in the above we have assumed that if $m_{i}=m_{j}$ then the two particles have the came spin and paity.

The two independent helicity amplitudes have the kinematical singularities

$$
\begin{align*}
& \left.A_{++, 00}(s, t)=\hat{A}_{++, 00}(s, t)(t-4 m)^{2}\right)^{-\frac{1}{2}}, \\
& A_{+}, 00^{(s, t)}=\hat{\hat{A}}_{+-}, 00^{(s, t) t^{\frac{1}{2}}\left(t-4 \mu^{2}\right)^{\frac{1}{2}}\left(1-2_{t}^{2}\right)^{\frac{2}{2}},} \tag{4.11}
\end{align*}
$$

where $\pm \equiv \pm \frac{1}{2}, m$ is the mass of the nuclenn and μ that of the pion, and \hat{A} is free of kinematical singularities. There is a constraint at the N \bar{N} threshoid which takes the form

$$
\begin{equation*}
\left(A_{+, v 0^{+i}}+\ldots, 00\right) \propto\left(t-4 m^{2}\right)^{\frac{1}{2}} . \tag{4.12}
\end{equation*}
$$

If each of these amplitudes is expressed in terms of a single Regge pol: (see section 4 for the details) we put

$$
\begin{align*}
& A_{++,}, 00^{(i)}=\gamma_{1}(i)\left(t-4 m^{2}\right)^{-\frac{1}{2}}\left(s / s_{0}\right)^{\alpha(t)}, \tag{4.13}\\
& A_{+-, 00^{(i)}}=\gamma_{2}(i)\left[t\left(t-4 \mu^{2}\right)\right]^{\frac{1}{2}}\left(1-z_{i}^{2}\right)^{\frac{1}{2}}\left(s / s_{0}\right)^{\alpha(l)-1} \tag{4.14}
\end{align*}
$$

where $\gamma_{1}(t)$ and $\gamma_{2}(t)$ are kinematical-singularity free residucs. When we take the asymptotic form of z_{t} for large s the latter amplitude becomes,

$$
\begin{equation*}
A_{+-} .00^{(t)} \approx \mathrm{i}_{2}(l) t^{\frac{1}{2}}(t-4 m)^{-\frac{1}{2}}\left(s_{1} / s_{0}\right)^{x(l)} \text {. } \tag{4.15}
\end{equation*}
$$

so both (4.13) and (4.15) are singular at $t: 4 m^{2}$. However the contrant (4.12) reme

$$
\begin{equation*}
\gamma_{1}\left(4 m^{2}\right)=\gamma_{2}\left(6 m^{2}\right) 2 m \tag{4.16}
\end{equation*}
$$

which we can ens are by putting

$$
\begin{equation*}
2 m \gamma_{2}(t)=\gamma_{1}(t)+\gamma_{3}\left(t\left[\left(4 m^{2}-t\right) / 4 m^{2}\right)\right] \tag{4.17}
\end{equation*}
$$

where , $^{(1)}$ and $\gamma 3^{(t)}$ are unconstrained and singularity free. Putting (4.17) in (4.15) we get, from (2.14)
$\frac{d g}{d t}=\frac{1}{64 \pi s q_{s 12}^{2}} \frac{1}{4 m^{2}}\left\{\gamma_{1}^{2}(t)-\frac{t}{4 m^{2}}\left[2 \gamma_{1}(t) \gamma_{3}(t)+\gamma_{3}^{2}(t)\left(1-\frac{t}{\varepsilon_{i \pi}^{2}}\right)\right]\right\}\left(\frac{s}{s_{0}}\right)^{2 \alpha(t)}$
which bas no singularity.
In principle such a constraint should be included in any Regge pole fit, but in practice had we used (4.15) instead of (4.17) the singularity at $t=4 \mathrm{~m}^{2}$ would not have made much difference. This is fortunate as: is very tedious to have invent parameterizatic-- which take care of all the conuiraints in processes with high $\mathrm{a}_{\mathrm{p}} \mathrm{n}$

We come now to the behaviour at $t=?[66]$, and ronsider first the unequal mass case $m_{1}: m_{2} \neq m_{3} \neq m_{4}$. From (4.4) we 'ind that is $t \cdots 0, z_{i}-\epsilon$ where $\epsilon= \pm 1$ ac-
 baviour

$$
\begin{equation*}
\operatorname{c}_{\lambda} \cdot\left(z_{i}\right) \underset{i-0}{\sim} i^{\lambda-\epsilon \lambda^{\prime} / 2} \tag{1.10}
\end{equation*}
$$

and so from (2.25)

$$
\hat{A}_{H_{i}}(s, t)-i^{-1}-\epsilon \lambda^{\prime} / n
$$

and from the definition (2.47)
$\hat{A}_{H_{i}}^{\eta}(s, \eta)=A_{H_{t}}(s, t) \pm \eta \hat{A}_{H_{t}}(s, \eta) \approx t^{-\left|\lambda-\epsilon \lambda^{\prime}\right| / 2} F_{1}(s, t) \pm \eta t^{-\left|\lambda-\epsilon \lambda^{\prime}\right| / 2} F_{2}(s, i)$.
where F_{1} and F_{2} are reguiar at $t=0$. Hence we conclude that $\hat{A}_{H_{l}}^{\eta}$ has a singularity of the form

$$
\hat{A}_{H_{t}}^{\eta} \underset{t \rightarrow 0}{ } \frac{F^{\frac{1}{2}} \max \left\{\left|\lambda+\lambda^{\prime}\right|, \sqrt{\lambda-\lambda^{\prime} \mid}\right\}^{T}}{t^{\eta}+N^{\eta}}
$$

whert M, N are defined in (2.16) and (2.10), and $\bar{\eta}$ is regular at $t=0$. However such a simgular behaviour is not permittod to a single Regge pole, for if we phe
$A_{H_{t}(\lambda, i)} \equiv \xi_{\lambda \lambda^{\prime}}\left(z, \hat{A}_{H_{l}}(\Gamma, t) \underset{i \rightarrow 0}{\sim} t^{\left|\lambda-\epsilon \lambda^{\prime}\right| / 2} \frac{1}{2}\left[\frac{F^{\eta}}{(M+M / 2} \mp \eta \frac{F^{-\eta}}{t^{(M+N) / 2}}\right]\right.$
the result is singular unless $F^{\eta}= \pm F^{-\eta}$, except when $\lambda=\lambda^{\prime}=0$. Such an equality of F^{η} and $s^{-\eta}$ at $t=0$ is in fact readily deducible by combining (4.21) and (4.22). However this relation can obviously ouly be satisfied if we havs iwo trajectories of opposite parity. Here we are assuming that there is only one trajectory so we must use ustead of (4.22)

$$
\begin{equation*}
\Phi_{H_{t}}^{\eta} \approx \frac{F^{\eta}}{t^{\frac{1}{2}} m^{\ln }\left\{|\lambda+\lambda|,\left|\lambda-\lambda^{\prime}\right|\right\}}=\frac{F^{\eta}}{t^{(M-N) / 2}} \tag{4.24}
\end{equation*}
$$

(Note that for boson-iermion scattering N is not an integer and we are tot allowed to multiply by a half integer power of t, We discuss this problem in section 3.)

In addition to the singularity (4.24), it is evident from (4.5) that if we use the form (4.10) for $\beta_{H}(t)$ we shall introduce a further singularity $t M-c(t)$. We shmill find in section 4 that the $\left(q_{t} 13 q_{t} 24\right)^{a(t)}$ behaviour of the residue will cancel with that of the leading order term in the asymptotic expansion of

$$
\begin{equation*}
d_{\lambda \lambda^{\prime}}^{\alpha}(z) \sim z_{t}^{\alpha} \sim\left(\frac{s}{2 q_{t 13} q_{t 24}}\right)^{\alpha} \tag{4.25}
\end{equation*}
$$

but the t^{M} factor remains, so combining (4.10) with (4.24) we end up with

$$
\begin{equation*}
\beta_{H^{(t)}}=t^{-(M+N) / 2} K_{\lambda \lambda},(t)\left(\frac{q_{t 13} q_{t} 24}{s_{0}}\right)^{a(t)-M} \gamma_{H^{\prime}}(t) \tag{4.26}
\end{equation*}
$$

where $\gamma_{H}(t)$ is free of kinematical singularities. However even thas wili not do fer

$$
\begin{equation*}
\beta_{H^{(t)}} \underset{t \rightarrow 0}{\sim} t^{-\alpha} t^{(M-N)_{i} 2} \tag{4.27}
\end{equation*}
$$

is not factorizable between the different helicity amplitu ? 3 . Wo know irom (2.67) that we must be able to write β_{H} as a product of the two vertices indepemienty

$$
\begin{equation*}
\xi_{\lambda \lambda^{\prime}}(t)=\hat{\beta}_{\lambda^{\prime}}(t) \beta_{\lambda^{\prime}}(t) \tag{4.26}
\end{equation*}
$$

The simplest way of satisfying this is to put $\beta_{H}(t) \sim t^{-\alpha} t^{(M+N) / 2}$ so we end up with $[66,67,37]$
where $\gamma_{H^{\prime}}(t)$, the 'reduced residue', is free of kinematical singularities etc., but may have to satisfy constraints like (4.16).

If one pair of masses is equal, say $m_{1}=m_{3}$, then $z_{t} \sim^{\frac{1}{2}}$, while if $m_{2}=n_{4}$ as well z_{t} is finite at $t=0$, so the \hat{A}_{H} have just the same singularities as the A_{H}.
 (equivalently under crossing) because with one mass pair equal the crossing matrix (2.12) is singular at $t=0$, while for both pairs equal the line $t=0$ is the boundary of the s-channel physical I egion where the s-channel amplitudes must satisfy

$$
\begin{equation*}
A_{H_{s}}(s, t) \sim t^{(|\mu|-|\mu \cdot|) / 2} \tag{1.30}
\end{equation*}
$$

The resulting singularities are [87]

$$
\begin{align*}
& A_{H_{i}} \sim i^{n / 2} \text { where } n \equiv\left[1-(-1)^{\lambda+\lambda}\right] / 2 \text { for EE }, \\
& A_{H_{t}}-l^{-\sigma} 1+z \text { where } z=\left[1-\eta(-1)^{2 \sigma_{1}+\lambda+\lambda^{\prime}+. / /}\right] / 4 \text { for EU } \tag{2.31}
\end{align*}
$$

where EE means both $m_{1}=m_{3}$ ano $m_{2}=m_{4}$, while EU means $m_{1}=m_{2}, m_{3} \neq m_{4}$.
Since $q_{t}{ }_{13}$ is finite if $m_{1}=m_{9}$, and $g_{t}{ }_{24}$ is if $m_{2}=m_{4}$, the threshold factor in (4.10) has the behaviour ${ }^{\circ}$ for EE and $t^{(M-\alpha) / 2}$ for ΣU, so we end up with $\beta_{H} \sim t^{n / 2}$ for EN: and $\beta_{H} \sim t(M-\alpha) / 2-\sigma_{1}+z$ for EU. However both forms are incompatible with factorization, and if we also take inco account the need for

$$
\left(\beta_{\mathrm{EU}}\right)^{2}=\beta_{\mathrm{EE}} \beta_{\mathrm{UU}}
$$

at $t=0$, with β Uy given by (4.29', we end up with

$$
\begin{equation*}
r_{H^{(t)}}=t^{3} K_{\lambda \lambda^{\prime}}(t)\left(\frac{q_{t 13} q_{t} \underline{s^{2}}}{s_{0}}\right)^{\alpha(t)-M} \bar{\gamma}_{I I}(t), \tag{4.32}
\end{equation*}
$$

with $\$$ given in table 2. We discuss alternative forms to this in the next section.
Table 2
The exponert of t in a Regge pole residue (aith evasion). For the different mass configurat'ons the $t=0$ behaviour is t^{δ} where
a) UU
$\delta=-\frac{1}{2}(M-\Lambda$
b) EU
$\bar{o}=\frac{1}{2}| | \lambda|-M|+\frac{1}{n}\left[1-\eta(-1)^{\lambda} \mid\right.$
c) $\mathrm{EE} \quad \delta=\frac{1}{5}\left[1-7(-1)^{\lambda}\right]+\frac{1}{4}[1-7(-1)$
where) $\left.\left(1^{-\lambda}\right)^{\prime}\right)$ is the helicity change at the equal mass ent in (B).

4.3. Conspiracies

In obtaining the $t=0$ behaviour of the Regge resicue function (4.32) we supposed that there was only a single Regge trajectory (of a g.ven parity), and so we were forced to give the residue the behaviour (4.34) which was less singular than that al lowed for the amplitude (f.22). This has the consequence that if we use the residue (4.32) the contribution of the Regge pole vanishes at $t=0$ tor all $A_{H_{l}}(s, t)$ with $N=0$.

This is because, as is evident from (4.23), tit definite parity amplitudes satisfy the constraint equatior

$$
\hat{A}_{H_{i}}^{\eta}(s, \hat{t}) \mp \eta_{\hat{A}}^{\hat{H}_{i}}{ }^{-\eta_{i}}(\bar{s}, \hat{i})=O\left(\hat{i}{ }^{N}\right) .
$$

With tir behaviour (4.32) we say that the single Regge pole 'evades' this constraint by having an extra t^{N} factor in its residue.

An citernative solution to this constraint, however, would be for two Regge poles of opposite particles ($~(1)$ to 'conspire' togethes io satisfy (4.33) by having equal trajectories, $\alpha_{+}(0)=\alpha_{-}(0)$, and equal residues

$$
\begin{equation*}
\beta_{H i}^{+}(1) \mp \beta_{H}^{-}(t)=O\left(t^{N}\right) \tag{4.34}
\end{equation*}
$$

with all the other quantum numbers (apart from parity) the same [6c-8r?. With this most singular behaviour we have

$$
\begin{equation*}
\beta_{H}^{\eta}(t) \sim t^{-c} t^{(M-N) / 2} \tag{4.35}
\end{equation*}
$$

but obviously one can have a less singular behaviour than this without compietey evading the constraint.

Unfortunately (4.35) is not compatible with factorization, but we can define the Toller quantum number of a given trajectory, Λ, such that the residue has the most singular behaviour allowed by analyticity for that helicity amplitude, $A H_{n}$ which has $\lambda=\lambda^{\prime}=A$; so putting $\beta^{\prime \prime}$ \# $\beta_{\lambda^{\prime}}^{\prime}$, we have

$$
\begin{equation*}
\beta_{\mathrm{A}}^{\eta} \approx F_{\mathrm{AA}}^{\eta} t^{-\alpha} \tag{4.36}
\end{equation*}
$$

So for the case (4.35) $\Lambda=N$; and from (4.36) we find

$$
\begin{equation*}
\beta_{\Lambda \lambda^{+}}^{\eta} \approx F_{\Lambda \lambda^{+}}^{\eta} t_{t}^{-\alpha}\left(\lambda-\left|\lambda^{-}\right|\right) / 2 \tag{4.37}
\end{equation*}
$$

And in general if we apply factorization we get

$$
\begin{equation*}
\beta_{\lambda \lambda^{\prime}}^{\eta} \approx F_{\lambda \lambda^{\prime}}^{\eta} t^{-\alpha_{t}|\Lambda-| \lambda \cdot \| / 2}{ }_{t}|\lambda-| \lambda \| / 2 \tag{4.38}
\end{equation*}
$$

and the constraint analogous to (4.34) is

$$
\begin{equation*}
\bar{F}_{\lambda \lambda^{\prime}}^{\eta} \mp \eta F_{\lambda \lambda^{\prime}}^{-\eta} \sim t^{\left(\left|\lambda+\lambda^{\prime}\right|-\left|\lambda-\lambda^{\prime}\right|-|\lambda-\lambda|\right) / 2} \text { or } \sim 1 \tag{4.39}
\end{equation*}
$$

whichever is the less singular. The residues $\beta_{\Lambda \Lambda}, \beta_{\Lambda \lambda^{\prime}}$ and $\beta_{\lambda \Lambda}$ have the most singular allowed behaviour, but the others are less singular.

The effect of such a conspiracy can be looked at from the viewpoint of the corresponding s-channel helicity amplitudes [69, 70]. We have

$$
\begin{equation*}
A_{H_{s}}(s, t)=\xi_{\mu \mu^{\prime}}(z) \hat{A}_{H_{s}}(s, t) \sim\left(-t^{\prime}\left\|\mu_{1-\mu_{2}} \mid-i \mu_{3}-\mu_{4}\right\|_{/ 2}\right. \tag{4.49}
\end{equation*}
$$

and, as required by angular momentum conservation, only amplitudes with no net helicity flip co not vanish in the forward direction. (As $s \rightarrow \infty, t=0$ becomes the forward direction where $z_{s}=1$.) The crossing angles x_{i} in (2.13) behave like

$$
\begin{equation*}
\sin _{s \rightarrow \infty}-\frac{2 m_{1}|t|^{\frac{1}{2}}}{\left|m_{1}^{2}-m_{3}^{2}\right|} \text { etc. } \tag{4.41}
\end{equation*}
$$

and $d_{\lambda_{1 \mu} / 1}^{\sigma_{1}}\left(X_{1}\right) \sim x_{1}\left|\lambda_{1}-\mu_{1}\right|$ as $x \rightarrow 0$; and so, since the residue (4.38) the t-channol amplitude behaves like

$$
\begin{equation*}
A_{H_{t}}(s, t) \sim t\left|\Lambda-\lambda^{\dagger}\right|+\mid \Lambda-\lambda \| / 2 \tag{4.42}
\end{equation*}
$$

we have
$A_{H_{S}}(s, t)$
$\sim(-t)^{\frac{1}{2} \min \left\{\left|\lambda_{1}-\mu_{1}\right|+\left|\lambda_{2}-\mu_{2}\right|+\left|\lambda_{3}-\mu_{3}\right|+\left|\lambda_{4}-\mu_{4}\right|+\left|\Lambda-\left|\lambda_{1}-\lambda_{3}\right|+\left|\Lambda-\left|\lambda_{2}-\lambda_{4}\right|\right|\right\}, ~\right.}$
when he minimum is taken over all $\lambda_{1} \lambda_{3} \lambda_{3} \lambda_{4}$ in the sum (2.11). So we end up with

$$
A_{H_{4}}(s, t) \sim(-1)\left(\left|A-\left|\mu_{1}-\mu_{3}\right|+\left|A-\left|\mu_{2}-\mu_{4}\right|\right|\right) / 2\right.
$$

Thus only amplitudes whoh have the same helicity fli, at woth vertices, i.e.

$$
\begin{equation*}
\left|\mu_{1}-\mu_{3}\right|=\left|\mu_{2}-\mu_{4}\right|= \pm \Lambda \tag{4.45}
\end{equation*}
$$

do not vanish in the forward direction. In the case of evasion $\Lambda=0$, and only ampiltures with no net hellcity flip are finite at $t=0$.

A precisely similar discussion can be given for the EE and EU mass cases except that now there are also kinematical singularities of $A_{H}(s, t)$ of the form $t^{-\sigma}$ which give us the maximum allowed singularity at each vertex. The result is [69,70] that the $t=0$ behaviour of the residue becomas t^{δ}, with δ given by table 3 instead of table 2.

Table 3

The exponent of t in a Regge pole residue for a Regge pole of Toller number A. For the different mass configurations the $t=0$ behaviour is t^{δ} where
2) UU $\delta=M|\Lambda-M|+|\Lambda-N|\}-M$
b) EU $\delta=\frac{\lambda}{4}\left\{|\lambda-|\mu||-M+\left[1+\eta_{i n}(-1)^{\lambda}\right]+E\left(\Lambda-2 \sigma_{1}\right)\right\}$
c) $\mathrm{EE} \quad \delta=\frac{1}{2}\left\{2+\eta \bar{\eta}(-1)^{\lambda}+\eta \bar{\eta}(-1)^{\lambda}+\epsilon\left(\Lambda-2 \sigma_{1}\right\}+\epsilon\left(\Lambda-2 \sigma_{3}\right)\right\}$
where $\eta=(-1)^{\Lambda+1}$ or $(-1)^{20-1}$ for $2 \sigma \geqslant R$.
and $\in(A-20)=A-20$ for $\Lambda-20>0$
$=0$ for $A-2 \sigma \leqslant 0$.

If we were to insert a more zero behaviou: than that of dable 3, i.e. $h^{(0}$. 5 $n=1,2,3 \ldots$ then we have

$$
\begin{equation*}
A_{H_{s}}(s, t) \sim(-t)\left(|\Lambda \cdot| \mu_{1}-\mu_{2}\left|+\left|\Lambda-\left|\mu 2-\mu_{4}\right|\right|\right) / 2+n\right. \tag{4.46}
\end{equation*}
$$

which vanishes for all helicities. This is known as trivial evasion [66].
For boson-fermion scattering (in the t-channel) ; and λ^{\prime} are half-odd-integers. So if we were to multiply the amplitude by t^{N} as in (4.24) we should be introducing a spartous square-root branch point. The amplitudes are analytic in \sqrt{t} and s [33]. and wre of the amplitudes in (4.21) changes sign on the replacement $\sqrt{p} \rightarrow-\sqrt{t}$. So we ha'e

$$
\begin{equation*}
\stackrel{H}{H}_{t}^{\eta}(s, \sqrt{i})=-(-\hat{i})^{\lambda-\lambda^{*}} A_{H}^{H}-\eta(s,-\sqrt{n}) \tag{1}
\end{equation*}
$$

This in the generalized MacDoweli symmetry [45] referred to in chapter S. If means that for fermions there has to be a conspiracy between opposite parity trajectories such that

$$
\begin{equation*}
\alpha^{\prime}(\sqrt{t})=\alpha^{-}(-\sqrt{t}) \text { and } \beta_{H}^{+}(\sqrt{t})=-(-1)^{\lambda-\lambda^{\prime}} \beta_{H}^{-}(-\sqrt{i}) \text {. } \tag{4.48}
\end{equation*}
$$

This solution correaponcls to taking $\Lambda=\frac{1}{1}$ in (4.38), which 120 m (4.44) is obvieualy necessary i^{*} all the s-channel amplitudes are not to vanish at $t=0$. A conspiracy is thus essenti 1 for fermion trajectorles.

Although in principle such conspiracies can occur in any process involving particles with spin there are only a few cases where they are likely to be important experimentally. The reason for this iz that if an evasive pole can contribute to a helicity amplitude with $\lambda=\lambda^{\prime}=0$ then its contribution to ($\mathrm{d} \sigma / \mathrm{d} t$) at $t=0$ wil not \rightarrow vanish. It will thus look very simillar to a trajectory with Toller number A contributing to the $\lambda=\lambda^{\prime}=\Lambda$ amplitude. Since there is usually not enough polarization information to determine the spin structure of a process in. detall it is only really in those processes where a particle can not couple to a non-flip amplttude that a clear distinction can be made. The leading crajectories f, A_{2}, p etc. are known to evade.

There is, however, a possibility that the pion takes part in a conspiracy in $\gamma \mathrm{p} \rightarrow \pi^{+} \mathrm{n}[71]$ and $\mathrm{np} \rightarrow \mathrm{pn}[72]$. In the first case there are nc amplitudes with $A=0$ since $\lambda_{\gamma}= \pm 1$ only, and $\lambda_{\pi}=0$. In the second case the pion courles equally to only two s-channel amplitudes, $A_{++,--}^{S}$ and $A_{+}^{s},-+$, and since the latier involves helfity flip and must vanish at $t=0$, so musi the who pion contribution. But in both these processes if the pion has $A=1$ its contribution can cem dia finite (in the latter case because the natural parity conspirator trajectory cancels the pion contribution to the fip amplitude and leaves it finite in tive nc-ilip) see section 7.4. As we shall discuss in chapter 7 there is a forward peak assoctated with the pion in these processes which might seem to favour the conspiracy mechanism, but such conspiracies seern to be incompatible with factorication (see ref. [73]) quite apart from the fact that no suitable scalar trajectory is known, and explan.tion involving Regge cuts are now preferred.

There is in fact no evidence that any trajectory has anythin; except the minimum possible Toller number, $A=0$ for bosons, and $A=\frac{1}{2}$ for fermicas

4.4. Daughter trajectories

If we consider the Regge pole term given in (3.3) and take the asymptot: form of the rotation function (2.51), and the residue from (4.32), we get

$$
\begin{equation*}
\dot{A}_{F_{t}}^{\gamma_{i}}(s, t)=-\bar{\beta}_{p}(t)\left(\frac{q_{t} 1 \Omega}{s_{1}} \frac{q_{t} 24}{\alpha}\right)^{\alpha(t)-M}\left[\frac{e^{-i \pi(o-v)}+\sigma}{2 \sin m(o-v)}\right] J_{H}(c)\left(z_{v} / 2\right)^{\alpha-M} \tag{4.49}
\end{equation*}
$$

where

$$
\begin{equation*}
\bar{\beta}_{H^{\prime}}(t)=16 \pi(2 \alpha(t)+1) t^{\delta} K_{\nu \lambda^{\prime}}(t) \gamma_{H^{\prime}}(t)(-1){ }^{\left(\lambda-\lambda^{+}-\left|\lambda-\lambda^{\prime}\right|\right) / 2} \tag{4.50}
\end{equation*}
$$

and

$$
\begin{equation*}
f_{H^{\prime}}(\bar{\alpha})=\frac{(2 \alpha)!}{[(\alpha+M)!(\alpha-M)!(\alpha+N)!(\alpha-N)!]^{\frac{1}{2}}} \tag{4.51}
\end{equation*}
$$

Then if we make the replacement

$$
z_{t} \underset{s \rightarrow \infty}{\sim} \frac{s}{2 q_{i 13} q_{t 24}}
$$

we obtain

$$
A_{H_{f}}(s, n)=-\beta_{M}(\eta)\left[\begin{array}{c}
a^{-i n(\alpha-v)}+s \tag{4.52}\\
2 \sin \pi(\alpha-v)
\end{array}\right] f_{H}(\alpha) \xi_{\lambda \lambda}\left(z_{t}\right)\left(\frac{s}{4 s_{0}}\right)^{0-M}
$$

 tour

However it is evident from (4.4) that this derivation goes wrong at $i=0$ for unequal mass kinematics. For since from (4.5) $q_{t}-t^{-2}$ we have $z_{t} \rightarrow 1$ for all s, and the usual asymptotic behaviour seems to fail at $t=0$. But this result is rather hard to belleve because we know that the scattering amplitude is not singular at $t=0$ and so it should have a uniform asymptotic behaviour.

The problem is further illuminated if we expand $\hat{d}_{\lambda \lambda^{\prime}}^{\sigma}\left(z_{l}\right)$ in powers of s. We put (from (4.4))

$$
\left.z_{t}=\frac{s}{2 q_{t} 13 q_{t 24}}-1+\Delta / s\right)
$$

where

$$
\begin{equation*}
\therefore=1_{4}^{1}\left(t^{2}-t \Sigma+\left(m_{1}^{2}-m_{3}^{2}\right)\left(m_{2}^{2}-m_{4}^{2}\right)\right] \tag{4.53}
\end{equation*}
$$

and expand

$$
\begin{equation*}
\hat{d}_{\lambda^{\prime}}^{\alpha \eta},\left(z_{t}\right)=f(\alpha)\left[\left(z_{t} / 2\right)^{\alpha-M}+c_{1}(\alpha)\left(z_{t} / 2\right)^{\alpha-M-2}+\ldots\right] \tag{4.54}
\end{equation*}
$$

where $a_{1}(o)$ is a known function. This gives

$$
\begin{gather*}
x\left[\left(s, 4 s_{0}\right)^{\alpha-M}+\Delta(\alpha-M) 4 s_{0}\left\{s^{\prime} 4 \sigma_{0}^{-M-1}\right.\right. \\
\left.\left.+(\alpha-M)(\alpha-M-1) / 2\left(4 s_{0} \Delta\right)^{2}+a_{1}(\alpha)\left(\frac{q_{i} 13^{q} q_{i 24}}{s_{0}}\right)^{2}\right]\left(s_{/} / 4 s_{0}\right)^{\alpha-M-2}+\ldots\right\} \tag{4.50}
\end{gather*}
$$

Thus the term of crder $\left(s / 4 s_{0}\right)^{-M / n}$ bas a singulawity f^{n}. It is this singularity of the Regge pole term which destroys the asymptotic behaviour at $t=0$.

But we know that the amplitude as a whole is analytic, so something must conce this unwanted singularity. One suggestion, first broached in ref. [74] and discussed in some detail in chapter 3 of ref. [15] is that the cancellation may come from the background integral in (2.54). There is a diniculty in that the baclyrgound should he $<O\left(s^{-\frac{1}{2}}\right)$, but in rof. [15] it is shown that the non- uniform asynaprotic behavicur of the fegge poie term can be matched precis by by that of he backs rownt whe satiafies the above bound for all $t \neq 0$. The d-plane interpretation of such a bactground is unclear, however.

An alternative, and much more popular suggection has been that one should inw voke further Regge pcles, 'snown as 'daughters' [75] which have singular restivo which precisely cancel te singularities produced by the criginal or 'parent' trafectory. Thus the first d ughter has a trajectory $\alpha_{1}(t)$ sur that

$$
\alpha_{1}(0)=a(0)-1
$$

and in residue

$$
\begin{gather*}
\beta_{1}(t) \underset{t \rightarrow i}{\rightarrow} \beta(0) \frac{\Delta^{\prime}(\alpha(0) \cdots M) 4 s_{0}}{t}+(\text { non-singular term }): \\
\Delta^{\prime} \equiv\left(\cdot v_{1}^{2}-m_{3}^{2}\right)\left(m_{2}^{2}-m_{4}^{2}\right)
\end{gather*}
$$

We need a sequence of such caughters with $\alpha_{k}(0)-\alpha(0)-k, k=1,2,3 \ldots$ and with residues whose singular parts are hetermined by the singularities of (4,55), (Note that β_{2} has to cancel the first singularity of α_{1} as well as the second term of (4.55), atc.) The non-singular parts of the daughter residues are not determined, however; and the relations (4.56) and (4.57) hold only at $t=0$ and tell us nothing about the behaviour of the daughters at other t values.

If there is a conspiracy the situation is more complicated than this because the relationship between the trajectories of opposite parity taking part in the conspir* acy also has to be maintained; and because of (2.49) a trajectory of unnatural par* ity can contribute to a natural parity amplitude to non-leading order, and viceversa. Since for a conspiracy with Toller number A an equality of the form (4.39) has to be satisfied not only are the positions of the daughter and consprator trajectories and che singular parts of their residues determined at $t=0$, but also the first ($\Lambda-1$) derivatives [68]. This limits the possible deviation of the daughter trajectory from the position $\alpha_{k}(t)=\alpha(t)-k$ as we move away from $t=0$.

If one pair of masses is equai, say $m_{1}=m_{3}, m_{2} \neq m_{4}$, then $d^{\prime}=0$ in (4.57) and so the first term is non-singular, and only the even-order daughters are required. And if both mass pairs are equal the q 's are not singular either, and the daughters are not needed. Factorization will demand their presence in such reactions of course, but with non-singular residues.

The final result is that if there is an ininite sequence of daughter trajectories the asymptotic behaviour $\hat{A}_{h}^{\vec{j}}(s, t) \sim s^{a(t)-1}$ is saintained for all A. Howe ar at $t=0$ the z_{t} in $\xi_{\lambda \lambda^{\prime}}\left(z_{t}\right) \rightarrow 1$ we we find that

$$
\begin{equation*}
A_{H_{i}}(s, 0) \cdots s^{\alpha(0)-M} \tag{4.58}
\end{equation*}
$$

rather than the usual behaviour $s^{o(0)}$. Since we have chosen Λ to be the helicity ($\lambda=\lambda^{\prime}=\Lambda$) of the t-channel amplitude which has the normal kinematical behaviour at $t=0$ (and whose contribution to the differentia. cross section, therefore, coes not vanish) we have the maximum power behaviour $A_{H_{t}}(s, 0) \sim s^{\alpha(0)-A . ~ S u c h ~ a ~ b e w ~}$ haviour holds only for a very small region round $t=0$, however (vanishingly small as $s \rightarrow \infty$), which may not include the s-channel physical region, and at larger $\mid t^{\prime}$ the usual behaviour still occurs (see ref. [25]).

Thus an infinite sequence of daughter trajectories is needed each haviug the same quantum numbers as the parent, except that the odd numbered daughters must have opposite signature, so that their signature factors will be fdestical at $t=G$, i.e. we need for the k th daughter

$$
\begin{equation*}
1 \cdots \sigma_{k} \mathrm{e}^{\mathrm{i} \pi \alpha(0)-k}=1+a \mathrm{e}^{\mathrm{i} \pi \alpha(0)} \tag{4.59}
\end{equation*}
$$

so $\sigma_{k}=\sigma(-1)^{k}$. Since the perity of the daughters must be natural or unnatural cor responding to that of the parent the actual parity of the odd cinughters' pinticles mill be opposite to those of the parent.

We have already noied ta chapter 3 that there is very little evidence for the exstence of such daugher trajectores at ph sical d varues for $l>0$, thught they can centaty mot be excluted, and there is no resson to expect that (2.58) will hold for larger :-

One way of trying to find ont what hapers for - O A, is construct dyamical
 peter equation with unequal masses [76], or represent the Regge poles as sums of ladder Feynman diagrams [77]. Freedman and Wang in their original work on anugher trajectories [75] noted hat the Bethe-Salpeter equation must produce daughters, but more recent won [76] has shown that the irajectories do not usutiay tun parallel to the parent, but gyrate wildy in the region of the negative J-axis. An example is shown in fig. 14. This makes one feel that if they exist the daughters may well bo wather unimportant objects serving mexely to maintain the $s a(t)-M$ beheviour at $t=0$ but having nothing to do with physical particles.

Fif. If The Regge irajectories obtained in ref. [76] using the Betho-Saipeter equation using apotontial with a repulsive cort. The cortinuous and dashed curves correspond to different entifltup strengthe. The strang \pm behaviour of the daughters will be noted

It houla be noted that if the daughters simply cancel the singularities of the leating legse pole there is no need to includ them explicitly in a Regge fit where only the leading power is used. If the daughters have non-singular parts to their residues additional $s \alpha(t)-1-M$ contributions may be present, but he other complications of the J-plane (secondary trajectories, cuts etc.) make them difficult to detect in the experimental data.

4.5. Houp theoretical methods

The conspirary and daughter problems indicate that $t=0$ is a dinicut posat sor Regge theory. Inceed the singularities which prompted the introduction $0_{\text {. }}$ dughters strongly suggest that the rotation functions $d_{j}^{f}\left(z_{i}\right)$ are inapproprtate here. the work of Toller [78] and his many followere attempts to rectidy this by adop us a nore general point of view with regard to the meaning of a partialmave : composition.

The partial wave series in the t-channel (2.15) with which we begai our discussior of Regge theory involves a decomposition of the amplitude in terins of representation functions of the three dimenslonal rotation group $\operatorname{SO}(3)$ (or, since we in clude half-integer spins), the covering group $\operatorname{SU}(2)$). Tuis rotation group is the 'little group' of "he inhomogeneous Lorentz group (or Poincare group) P (see eg. ref. [79]), i.e. it is the group of tr insformations which leaves invariant the totat four-momentum of the incoming (or outgoing) particles

$$
\begin{equation*}
p_{\mu} \equiv\left(p_{1 \mu}+p_{3 \mu}\right)=\left(p_{2 \mu}+p_{4 \mu}\right), \quad \mu=1, \ldots, * \tag{4.60}
\end{equation*}
$$

The angular momentum d^{2} is of course the eigenvalue of the Casimir operator of this little group.

However, SC(3) is only the little group for $\Sigma_{\mu} P_{\mu}^{2}, t>0$. Wigner [80] showed that there are four distinct classes of representations of ρ cliaracterized wy 4 as ferent values of the Cesimir operator p2. These are

(i) Timelike $t>0$	$;$	little group $\operatorname{SO(3)}$	
(ii) Spacelike $t<0$		little group $\operatorname{SO}(2,1)$	
(iii) Lightlike t	$=0$ and $P_{\mu} \neq 0 ;$		little group $\mathrm{E}(2)$
(iv) Nuil $\quad t$	$=0$ and $P_{\mu}=0 ;$		little group $\operatorname{SO}(3,1)$.

The representations of $\operatorname{SU}(2,1)$ have been studied by Bargman [81], and he showed (cheorem 9) that a function which is square integrable on the group manifold can be expanded in terms of the principle and discrete series of represertations; the representation functions being agsin the $d_{\lambda \lambda^{\prime}}^{J}\left(z_{t}\right)$, but with z_{l} tating the anphysical values appropriate to $t<0$. The representation of the scattering ampli..de on this basis has the form $[82,83]$

i.e. precisely the same as 2.54) without any Regge poles or cuts in Red $>-\frac{1}{2}$. The square-integrability condition in fact amounts to the requirement that

$$
\begin{equation*}
{ }^{4} H_{l}(s, t)=\mathrm{O}\left(s^{-\frac{t}{2}}\right) \tag{4.67}
\end{equation*}
$$

so the absence of such singularities is obvious. It thus appears that there is a methematical analogy between making the Sommerfeld-Watson transform and representing the amplitude in terms of its little group for $t<0$. It should be noted, however, that the Sommerfeld-Watoon repyesotation is valid for all sand, while this little group representation applies only to $t<0$, so there is by no means a complete equivalen se beiween them. What is more there is nothing very special about the line $\operatorname{Re} J=-\frac{1}{2}$ in (2.54) and we are free to move the contour as we wish, whereas (4.61) can only embrace Regge singularities in the rightohalf $f=5$ ane by analytic crntinuation. In non-relativistic potential scattering $\mathrm{SO}_{3} 3$) is still the lithe group for the time-like regic:i, but for $t<0$ the little group is E(2) [84] whose representations are quite unlike those of $\operatorname{SO}(2,1)$ and do not give a satisfactory ass.s
for coninuation in $I[85]$. Since we know that the Sommerfeld-Waison transform can be pertormed in potential scattering this is a further indication of the need for caution hassuming the physical equivalence of (2.54) and (4.61).

Bearmg these qualufations in migd one can extmine what happens at $t-0$. Ee cause of the mass-shell conditons $H_{1}-m, r_{2}^{2}-N_{2}^{2}$ etc., tie fact hat
 Thus whether the little grcup will be O(3, 1) or $\mathrm{E}(2)$ depends on whether or not the musses are equal. If they are equal one can try, in analr, with the above, to represent the amplitude on the basis of $\operatorname{SO}(3,1)$ representations, de vied by $d T_{T} \Lambda \sigma^{\prime \prime}\left(z_{t}\right)$. These have been derived by Toller and Sciarrino [86] (see also ref. [83]) and depend on two Casimir operators one of which, the Toller number Λ, is discrete (taking on values $0,1,2,3 \ldots$ or $\frac{1}{2}, \frac{1}{2}, \frac{8}{2} \ldots$) and the other, σ, is pure imaginary $(-\infty<10<\infty)$. This extra Casimir operator appeare because there are two degrees of freedom in satlisfying $r^{2}=0$ with equal masses. (The other corresponds to the variation of s.)

The partial-wave expansion can be written $[78,83]$
where the $A_{T T^{\prime} \lambda}^{A} \lambda^{\prime}$ are sitably defined 'partial-wave' amplitudes, $T_{M} \equiv \min (T, T)$ and in the summstion

$$
\begin{equation*}
\left|\sigma_{1}-\sigma_{2}\right| \leqslant T \leqslant \sigma_{1}+\sigma_{2} \quad \text { and } \quad\left|\sigma_{3}-\sigma_{4}\right| \leqslant T^{\prime} \leqslant \sigma_{3}+\sigma_{4} \tag{4.64}
\end{equation*}
$$

The hypothesis ie then made that one can ins re a Toller pole into the σ variable fust as one normally inserts a Regge pole into he fintegral of ?? St So if there is a pole at $\sigma=a$ say we have

$$
\begin{equation*}
A_{H^{\prime}}(s, 0)=(4.63)+\delta_{\lambda \lambda}, \sum_{T T} g_{T T}\left(\Lambda^{2}-2^{2}, A a,\right. \tag{4,65}
\end{equation*}
$$

where s is the Toher number of the pole which is restricten by (4.64). The asymptoti: behaviour of (4.65) can be deduced from the fact that

$$
\begin{equation*}
d_{T \lambda T^{\prime}}^{\Lambda \sigma}\left(z_{t}\right) \sim\left(z_{i}\right)^{\sigma-1-|\Lambda \cdot \lambda|} \tag{4,68}
\end{equation*}
$$

so we find

$$
\begin{equation*}
A_{H_{t}}(s, 0) \sim \delta_{\lambda \lambda^{\prime}}\left(\ddots_{t}\right)^{a-1-|\Lambda-\lambda|} . \tag{4.67}
\end{equation*}
$$

If we compare this with (4.58) we see that it is the same as the asymptotic behavbur of a Regge pole with $a(0)=a-1$ and Toller number Λ. In fact if me decom-
 single Toller pole (4.65) corresponds to an infinite sequence di Resse pole: wh

$$
\begin{equation*}
\alpha_{k}(0)=a(\Lambda, 0)-k-1, \quad k=0,1,2 \ldots \tag{4.68}
\end{equation*}
$$

In fact it is completely equivalent to a conspiring daughter sequence of Toller numb ar A A way from $t=0$ of course we lose the $S O(3,1)$ symmetiy so there is no need :

Unfortunately a similar argument can not ba carried through for unequal masses, because then the little group is $\mathrm{E}(2)$, and as has alreacty been mentioned it does not seem to have much connection with Regge theory, it is thus necessary to use argin ments based on continuation in the masses to justity the use of roller polee in this case [87].

The question arises is to whether nature uses this extra degree of freedom at $t=0$ and containe conspiring daughter sequences, or whether th chooses to ignore it and evade the $t=0$ constraints. Just as a single Toller pole correaponds to aconspiracy of Regge poles so a single Regge pole corresponds to a 'counter-conspiracy' of Toller poles. The real quesicion is thus which one thould regard as primaty, the J-plane or the Toller σ-plane. There does not seem to be any way of answering ing question a priori, but various models have been suggested. We have already mentioned, in the previous section, that the Bethe-Salpeter equation exhibits the SO $(3,1)$ symmeiry for unequal masses [75]. Of course with unequal masses this symmetry is only to be found off the mass shell. But whether guch a model can be taiken seriously at the daughter level remembering the peculfar resuits presented in fig. 14 is doubtful. Other dynamical models, such as those based on the N / D method, which continue on shell two body unitarity cown to $t=0$ do not wissess the extra degree of freedom needed for this symmetry

The question of the significance of Toller poles cr n of course only tinally be resolved by confrontation with experiment. We have :l eady noted the lack of evidence for daughter trajectories, and the akence of the narity doublets which are needed for conspiracies, and unless a lot more resonant states are found one will he farced to conclude that little trace of the $S O(3,1)$ symmetry persists in the ichannel dr sical region. But a more firect test is whether or not conspir ng trafectoriss are needed to fit experimental data. We shall find in chapter 7 tiat the leading $P, \mathbf{F}^{*}, 0, \omega, \mathrm{~A}_{2}$ etc. traisctories do not conspire, and we have already noted that the best test of comspiracy, that of the pion in $\gamma p \cdots \pi^{\circ} n$ and $p n \rightarrow$ np no longer seems viable. Where is thus no evidence for trajectories with $\Lambda>\frac{1}{3}$, and the prospects for Tollez poles seem poor at present.

4.5. Nonsense zeros

We have found in section (2.9) that the behaviour of $\varepsilon_{\lambda \lambda^{\prime}}^{J}\left(z_{t}\right)$ at nonsense points introduces various singularities into the fartial wave amplitudes, and of course, from (4.1), these must also appear in the residue function.

The story so far is that ve may write cur Regge pole term either with first typ functions as in (2.54) or second type as in (2.58). If we take the asymptotic z_{i} forms of these functions (either (2.51) or (2.34)), give the residue the cinemactal singularities ci (4.32), and use the arguments of section 4 to replace z_{t} by $(s-u) / 4 q_{t 13} q_{i 24}$ for all $t, s \rightarrow \infty$, we end up with

where $\bar{\gamma}_{H}{ }^{(t)}$ is a kinemacical singularity free residue function. (Note that to ntain this result from (2.58) i is necessary to use

$$
\left.\Gamma(\alpha)=\pi[\sin \pi \alpha(i-\alpha)]^{-1} .\right)
$$

The ixpression in braces \{ $f_{H}(\infty)$ has various stngularities whicl can not be presen in the amplitude, and so we require that $\gamma_{H}(t)$ should cancel then. Firstly stace

$$
\begin{gathered}
\left(2 a!2^{2 a+1}(a!a \cdot b)!\right. \\
\pi^{\frac{1}{2}}(2 a+1)
\end{gathered}
$$

wo can rewrite

$$
f_{H}(\alpha)=\frac{2^{2 \alpha+1}}{n^{\frac{1}{2}}} \frac{(\alpha)!\left(\alpha+\frac{1}{2}\right)!}{[(\alpha+M)!(\alpha-M)!(\alpha+N)!(\alpha-N)!]^{\frac{1}{2}}} \frac{1}{(2 \alpha+1)}
$$

The last tactor cancels with that in (4.69). There are poles at $\alpha=-\frac{3}{2},-\frac{5}{2} \ldots$ from the ($\alpha+3)$), or at $\alpha=-1,-2,-3$ from the (α)!, depending on whether M and N are in tegers or half integers. Such poles are not expected in the amplitude, and in fact violato the Mandelstam symmetry (2.57). so we need $\gamma_{H}(t) \sim\left[\left(\alpha+\frac{1}{2}-v\right)\right]^{-1}$ to cancel them. Such a behaviour is in fact guaranteed hy the behaviour of $c j \lambda^{\prime}\left(z_{t}\right)$ (see (2.33) in the Froissart-Gribov projection (2.39) for $A_{H J}^{J}(t)$ (as long as it converges). The remaining part of (4.69) has the form

$$
\alpha \frac{(\alpha+v)!}{\sin \pi(\alpha-v)[(\alpha+M)!(\alpha-M)!(\alpha+N)!(\alpha-N)!]^{\frac{1}{2}}},
$$

which beha:es, as $\alpha-J_{0}$, where $J_{0} v$ is an integer, like

| $\left(\alpha-d_{0}\right)^{-1}$ | for | $J_{0} \geqslant M$ |
| :--- | :--- | :--- |\quad and $v>J_{0}>-N$,

tho branch point $\left(\alpha-J_{0}\right)^{-\frac{1}{2}}$ at the sense-ronsense (sn) poims ise sevion 0.5 for his it rminologyi must not appear in the amplitude, so we nesd aither
If $(t)-\left(\alpha-d_{0}\right)^{-2}$ or $-\left(\alpha-i_{0}\right)$. The former behaviour wuid we papected wom the Froissart-Gribov projection cxcept that, as described in section (2. 3), we expect 3 superconvergence relation to hold in order to remove tue resulting fixed infinite singularity (neglecting the third-double-spectral-function effects ad wreng-signa* ture points $)$. So we end up with $\bar{\gamma}_{H}(t) \sim\left(\alpha-J_{0}\right)^{\frac{1}{2}}$, at least at rizht signature points. The poles in the ss. region $J_{0} \geqslant M$ correspond of course to the physical particle poles so we should normally expect $\bar{\gamma}_{H}(i)$ finite here. Then using the factoriration requirement (4.28) we must have

$$
\begin{equation*}
\beta_{\mathrm{ss}} \beta_{\mathrm{mn}}=\left(\beta_{\mathrm{sn}}\right)^{2}\left(\alpha-\beta_{n}\right) \tag{4.71}
\end{equation*}
$$

so the nn. residues must vanish like ($\alpha-y_{0}$). This is krown as the choosta-senge mechansm in that the trajectory couples to the ss. anplituce ant fecouples irom the min amplitude. If this behaviour occurs at every nn. Fons we ond we with ig9

$$
\bar{Y}_{H}(l) \alpha\left[\frac{(\alpha+M)(\alpha+N)}{(\alpha-M) 1(\alpha-N H}\right]^{\frac{1}{2}}
$$

Combining this with our earlier requirements we can put

$$
\begin{equation*}
\bar{\gamma}_{H}(d)=\gamma_{H}(t)^{\frac{2^{2 M+1}}{v^{2}}} \frac{1}{\left(\alpha+\frac{1}{2}-v\right)!}\left[\frac{(\alpha+M)!(\alpha+N)!}{(\alpha-M)!(\alpha-N)!}\right]^{\frac{1}{2}} \tag{4.79}
\end{equation*}
$$

and we obtain

$$
\begin{align*}
A_{H_{i}}(s, t)=-(-1)^{\left(\lambda-\lambda^{\prime}-\left|\lambda-\lambda^{\prime}\right|\right) / 2} 16 \pi t^{\delta} K_{\lambda \lambda^{\prime}}(t) \gamma_{H}(t) & {\left[\frac{\mathrm{e}^{-i \pi(\alpha-v)}}{2 \sin \pi(\alpha-1)}\right] } \\
& \times \frac{(\alpha+v)!}{(\alpha-M)!(\alpha-N)!}\left(\frac{s-u}{2 s_{0}}\right)^{\alpha-M} \xi_{\lambda \lambda^{\prime}}\left(z_{l}\right) \tag{4.74}
\end{align*}
$$

where the residue $\gamma_{H}(t)$ is free of all kinematical requirements fexcent possibly threshold constraints).

This expression has the following behaviour at right-signature points
(1) Poles $\left(\alpha-J_{0}\right)^{-1}$ for $J_{0} \geqslant$ il
(2) Finite for $M>J_{c} \geqslant N$
(3) Zeros $\left(\alpha-\sigma_{0}\right)$ for $N>J_{0} \geqslant v$ and $J_{0}<0$.

At wrong signature points there is an extra zero, $\left(\alpha-J_{0}\right)$, coming from the s.gnature factor so the behaviour is finite at (1), zero at (2), double zero at (3) (if re negeet the third double spectral function).

There are however three considerations which may complicate this comparatively simple pictur \because :
a) Ghost-killing aciors. If a trajectory passes through a right-signature sense point for $t<0$ the resicue must vanish. Otherwise for our sense choosing amplitude we should have a particle pole of negative t, i.e. negative (mass) ${ }^{2}$. Since the Fronssart bound requires $\alpha(t)<1$ for $t<0$ this is onlv a problem for even signature trajectories, such as the P, f and A_{2}, at $c=0$. : uth an extra zero will then also have to appear in the other amplitudes because r. (4.71). The use of such a zero is sometimes called the 'Thew mechanism' [88].
b) Choosing nonsense. At any given nonsense point the trajectory may choose to satisfy (4.71) by having $\beta_{n n}$ finite and $\beta_{s s} \alpha\left(\alpha-{ }^{\prime} \mathcal{F}_{0}\right)$. Although it is hard to thint of a dynamical mechanism which will cause this to happen it is an equally good solution [33]. We then have $\bar{\gamma}_{H}(t) \propto\left[\left(\alpha-J_{0}\right)\left(\alpha+J_{0}+1\right)\right]^{\frac{1}{2}}$ for $N \leqslant J_{0}<M$ as above, but $\bar{\gamma}_{H}(t) \propto\left(\alpha-J_{0}\right)\left(\alpha+J_{0}+1\right)$ for some sense points, say for $s>J_{0}>M$, where $s-v$ is an integer $>M$. So we have

$$
\begin{equation*}
\bar{\gamma}_{H}(t) \propto \frac{(\alpha+s)!}{(\alpha-s)!}\left[\frac{\left.\left(\alpha-h_{1}\right)!\alpha-N\right)!}{(\alpha+M)(\underline{\alpha}+N)!}\right]^{\frac{1}{2}} \tag{4.75}
\end{equation*}
$$

insteac of (4.72). The resulting pole in the mn. a mplitude crn not correspond to a physicil particle of course, and so it must be cancelled (or compensatea) by a;other trajectory. However the asymptolic behaviour of $e_{\lambda \lambda^{-}}^{-1}\left(z_{i}\right)$ at a m. point J_{0} is $\sim z_{t}^{\alpha-\underline{L}}$ not $\sim z_{t}^{\alpha}$ the compensating trajectory should pass through $-J_{0}-1$. This is oiten called the 'Gell-Mann mechanism'.
if we wish to avoid the need for such a compensating trajectory we can insert an exira zero in the nn. residue. Then by (4.71) an extra zero will also appear in the ss. residue. This is known as the 'no compensation mechanism'
c) Wrong-signature fixed poles. Because of the third double spectral function, fixed pales (or infinite square root branch points) may be expected in the signatured amplitudes at wrone-signature points. These do not give rise to poles in the physical amplitudes be use they are canceller by the zero of the signature factor fowere if such poles are present in the residues of Regge poles they will cancel the sugnture factor's acero which we assumed above. There are two points to note about this, however. Firstly these fixed poles may simply 're additional to the Regge poles and so not present in their residues (see ref. [89]). And secondly, even if they do mulupiy the residue, the fact at the nonsense point the 1 sidue has contributions only from the third double spectral function, whereas at all other points thas contribution from all three double spectral furctions, means that one wruid certainly expec a zero near to this point.

The resulting behavinur of the residue and of the aniplitude at the ss., sis. and mn. points corresponding to these various possibilities is sumanarized in table 4.

It will be noted that for some choices a zero is expected in various helicity amm plitudes at the nonsense points. The classic example of this is the differential cross section for $\pi^{" p} \rightarrow \pi^{\circ}$. which is believed to be controlled near the for ward direction by the ρ pole. Fror fig. 5 we see that $\alpha_{\rho}(t)=0$ for $t \approx-0.6 \mathrm{GeV}^{2}$. If we consider the two amplitudes for $\pi^{-} \pi^{\circ} \rightarrow \bar{p} n$ given in (4.11), $\alpha=0$ is a ss. puint for A_{++00}, but a sn. point for A_{+-00}. Hence we see from table 4 that if the ρ chooses sense and there is no wrong signature pole, A_{+-00} vanishes at $t=-0.6$ while A_{++00} remains finite. On the other hand if it chooses nonsense both vanish, while if the residue contains the fixed pole both are finite. The data shown in fig. 15 exhibit a dip but nof a zero. This would seem to havour the choosing sense mechznism, though othor possibilities can not be ruled out. We shall mention an alternative explanation of this dip, involving cuts, in sec'ion (5.6).

Table 4
The behaviour of the residue and amplitude as a i: s ctory passes through a nonsense point. Io.

Residue				Amplitute			
	$n \mathrm{n}$	sn	ss	Nechanism	nn	su	ss
$\begin{aligned} & \text { Right } \\ & \text { signature } \end{aligned}$	$\left(0-J_{o}\right)$	$\left(\alpha-J_{0}\right)^{\frac{1}{2}}$	1	Sense choosing	$\left(2 \cdots, t_{0}\right)$	1	$(a-2)^{-1}$
	1	$\left(\alpha-s_{0}\right)^{\frac{3}{2}}$	$\left.A^{(t)}-s_{0}\right)$	Nonsense choosing	1	1	1.
	$\left(\alpha-J_{0}\right)^{2}$	$(\alpha-b)^{\frac{3}{2}}$	$\left(\alpha j_{n}\right)$	Chew mechanism	$(0-3)^{2}$	(0-) 0^{\prime}	1
	$\left(\mathbb{C o s} y_{0}\right.$	$\left(\pi-r_{0}\right)^{\frac{3}{2}}$	$\left(\alpha^{-1}\right)^{2}$	No compensation	$\left(\alpha-s_{0}\right)$	$\underline{a-1})_{0}$	$(0-3)$
Wrong signature	$\left(c-5_{0}\right)^{-1}$	$\left(\alpha-x_{0}\right)^{-\frac{1}{3}}$	1	Fixed pols	1	!	

[^0]

Fig. 15. Data on $d \sigma / d t$ for $\pi-p-\pi^{\circ}{ }^{n}$ at various energies. The limes are a fit with ρ and ρ^{\prime} trajectories from ref. [189].
4.7. Resge poles in s-chantel amplitudes

In discussing the contribution of a t-channel pole it has been essential to work with t-channel helicity amplitudes. This is rather unfortunate because, as we have seen, we are involved with several t-chanme: singularities and constraints but when finally we combine the helicity amplitudes to give the differential cross section (2.14) all these kinematical singularities cancel out. This must be so since we know that we could equally well use (2.9), and the s-channel amplitudes have no t singularities except thase from $\xi_{\mu \mu^{\prime}}\left(z_{s}\right)$ in the forward direction, $\phi(s, i)=0 \mathrm{Be}-$ cause of this it is clear that there would be many advantages in working wit the t channel poles in s-channel helicity a nplitudes instead [69,70]. In doing this the poinis we need to take care of are:
(i) The extra t factore at $t=0$ required by parity conservation and factorization.
(ii) The general factorization of the residue for different t-channel helicities $\lambda_{i} x^{\prime}$
(iii) The various nonsense factors required by the t-channel amplitudes.

It iurns out that (i) and (it) can readlly be accomodated if we work only to iirst or der in ($\%$) , and that the only problem concerns (iii).

One begins by writing

$$
\begin{equation*}
A_{H^{\prime}}(s, \eta)=\left(\frac{1-\alpha_{s}}{s_{0}}\right)^{1 \mu-\mu^{\prime} / 2}\left(\frac{1+\varepsilon_{S}}{2}\right)^{1 \mu+\mu_{v}^{\prime} / 2}\left[\frac{e^{-i \pi \alpha-v}}{2 \sin \pi(\alpha-v)}\right]\left(\frac{s}{s_{0}}\right)^{\alpha(t)} \beta_{F^{\prime}}(t) . \tag{4.76}
\end{equation*}
$$

This has the t singularities required by angular-momentun conservation, and the required Regge behaviour. Now as $s \rightarrow \infty$

$$
\begin{equation*}
\left(\frac{s}{s_{0}} \frac{1-z_{s}}{2}\right)^{\left|\mu-\mu^{\cdot}\right| / 2}-\left(\frac{-1}{s_{0}}\right)^{\left|\mu-\mu^{*}\right| / 2} \tag{4.77}
\end{equation*}
$$

which is indefsndent of s, as required, but it does not satiefy the t-channel factori.. zation condition. To obtain a proper fantortzed form we make see of the result
(4.44) for the $t=0$ behaviour of a s-channel amplitude due to an evasive ($f=0$) pole, and put
$A_{H_{S}}(s, t)=\left(\frac{-t}{s_{0}}\right)^{\left(\left|\mu_{1}-\mu_{3}\right|+\left|\mu_{2}-\mu_{4}\right|-|\mu+\mu|\right) / 2}$
$x\left\{\left(\frac{s}{s_{0}} \frac{1-z_{s}}{2}\right)^{\left|\mu-\mu^{\prime}\right| / 2}\left(\frac{1+z_{s}}{2}\right)^{i \mu+\mu \cdot / / 2}\left[\frac{\mathrm{e}^{-\mathrm{i} \pi \alpha-v}}{2 \sin \pi(\alpha-v)}\right]\left(\frac{s}{s_{0}}\right)^{\alpha(t)} \gamma_{H_{s}}(t)\right\}$,
where $\gamma H_{s}(t)$ is factorizable in terms of s-chan el helicitien, i.e

$$
\begin{equation*}
\gamma_{\mu_{1} \mu_{2} \mu_{3} \mu_{4}}=g_{\mu_{1} \mu_{3}} g_{\mu_{2} \mu_{4}} . \tag{4.79}
\end{equation*}
$$

Although we have deduced (4.78) using the resuli (4.44) it must in iact he whid for any mass combinatiors since $A_{H_{S}}$ has no t singularities which depend on the masses.

The factorization (4.79) in terms of s-channel helicities stems from the factorization of the crossing matrix (2.12), but (4.78) is valic only to first or ter in $1 / \mathrm{s}$ from (4.77). Hence one must not extrapolate (4.78) to far from the forward peak. but in liew of ite simplicity it has much to recommend it.

It is not difficult to generalize the above resuit to include conspiring trajeriories except that one needs to constrvet combinations of $s \cdots$ hannel amplitudes corresponding asymptotically to detmite parity in the t-chamuel (see ref. [69]). One then deduces from (4.44) the form

$$
\begin{equation*}
A_{H_{S}}^{\eta}(s, t)=\left(\frac{-i}{s_{0}}\right)^{\left|\Lambda-\mu_{1}-13\right|\left|+A-\left|12-\mu_{4}\right|-\mu-\mu\right.} \times\left\{4.78_{3} .\right. \tag{4.10}
\end{equation*}
$$

Wheit the 'good parity' amplitudes are
iad constratnts libe (4.33 ; hold. This reduces to (4.78) if $\mathrm{A}=0$.
As we noted above the chief problem with this method arises when we consider
the nonsense factors. For suppose that in some process just one I-channel helinity amplitude A_{H} vanishes like $\left(\alpha-J_{0}\right)$ for $t<0$. Then using the crossing relation (2.11) we deduce that there must be a constraint on the s-channel amplitudes of the form

$$
\begin{equation*}
\sum_{H_{S}} M\left(H_{s} H_{t}\right)^{-1} A_{H_{s}}(s, t) \propto\left(\alpha(t)-J_{0}\right) \tag{4,82}
\end{equation*}
$$

which is not easy to parameterize. But from table 4 it can be seen that if the trajectory chooses nonsense there are no zeros in the t-channel amplitudes at the right signature points. (Remember the nn. pole will be compeasated.) Similarly if there are fixed poles in the residues at wrong-signature points there are no zeros in any of the amplitudes. So for these two cases there is no problem. The choosing scise, and Cnew mechanisms have zeros in some amplitudes and not in othera, however, and tiere is no alternative to using the crossing matrix as in (4.82).

4.8. Regge poles and asymptotic behaviour

From the earlier sections of this chapter we have ended up with a Regge pole asymptotic form (4.74) which contains the various kinematical factor a discussed in sections 2 and 3, (which depenci on the external masses and whether or not a conspiracy occurs) and which assumes that the trajectory chooses sense. We have also mentioned various alternative α factors which occur if the trajectory ctooses nonsense, if there are fixed po es, or ghost-killing factors, etc. We now wish to discuss the general characteriscics of (4.74).
a) Power behaviour. Evidentiy

$$
A_{H_{t}}(s, t) \underset{s \rightarrow \infty}{\sim}\left(\frac{s-u}{2 s_{\mathrm{o}}}\right)^{\alpha(t)} \sim\left(\frac{s}{s_{\mathrm{o}}}\right)^{\alpha(t)}
$$

for all t except for unequal mass kinematics when $z_{t}-1$ at $t=0$ and there is instead an $\left((s-u) / 2 s_{0}\right)^{\alpha-M}$ behaviour as we approach $i \quad 0$. But since $t=0$ is ouside the physical region this is not usually very important. See re.. [25] for a tho douth discussion. Apart from this the pure power behaviour is characteristic of a pole. To non-leading order in (s / s_{0}) there will be many corrections, due to the nonleading terms ir the expe ${ }^{\circ}$.3iou of $d_{\lambda^{\prime}}^{\alpha}\left(z_{t}\right)$, and due to daughier trajectories and trajectories of opposite parity, quite apart from more suintle corrections aeeded because a single Regge pole has the wrong singularities in s (see e.g. chapter 3 of ref. [15]). This should warn us against trying to work ion far below the leading singularity in a Regge fit. With such a power behaviour ue predict frora (2.14)

$$
\begin{equation*}
\frac{\mathrm{dv}}{\mathrm{~d}^{\prime}} \sim\left(\frac{s}{s_{0}}\right)^{2 \alpha(t)-2} \tag{6.83}
\end{equation*}
$$

and from the optival theorem (2.8)
if a single trajectory dominates.

$$
\begin{equation*}
\sigma^{\operatorname{tot}}(s) \sim\binom{s}{s_{0}}^{\alpha(t)-1} \tag{1.84}
\end{equation*}
$$

b) Trajectory dominance. If there are several trajectories present, the leading trajectory, the one with the largest $\operatorname{Re} \alpha(t)$, will be dominant asymptotically. The value of s above which this occurs depends partly on the ratio of the two coupl ings,
but particularly on the value o: s_{0}. In most Regge fits s_{o} is held fixed at $\approx 1 \mathrm{GeV}^{2}$, but this is mainly a matter of 'folklore' as we hive no theoretical way of deter-mining what it should be (see however section (6.5)). On th : other hand if the correct value were much larger than this it would be hard to a derstand why a smoon Soge boherour is observe in most ampitudes for $s \times 2-3 \mathrm{GeV}^{2}$.
c) Comection with particles. The trajectory functions should of course pass through physical particles for $t>0$ and we can obtain a good idea of what they will be simity by continuing the straight lines of figs. 5-12 to $t<0$. The dominant boson trajectories will be those of the vector and tensor nonets with intercepts between about C and $\frac{1}{2}$, plus of course the r omeranchon with $\alpha(0)=1$. We discuss fits much more fully in chapter ", and here we will give just one illustration based in the $\boldsymbol{m}^{-p} \cdots \overline{7}_{n}$ data in fig. 15. A simple fit of the equation

$$
\begin{equation*}
\log (\mathrm{d} \sigma / \mathrm{d} t)=[2 \alpha(t)-2] \log (s)+\text { constant } \tag{485}
\end{equation*}
$$

at difierent t values gives the curve for $\alpha(t)$ shown in fig. 16. This extrapolates almost through the ρ particle, though of course there is no reason why the trajectory should be exactly straight.

A fixed power behaviour, $\alpha(t)=J_{0}$ (a constant), would correspond either to a fixed J plane pole (which does not give rise to a t plane pole and hence is not a particle) or to a Kronecker-delta term in the f-plane

$$
\begin{equation*}
A_{H_{\mathrm{c}}}(t)=\delta_{J_{\mathrm{C}}} \frac{g^{2}}{t-m^{2}} \tag{4.86}
\end{equation*}
$$

which would correspond to an elementary perticle of $\operatorname{spin} J_{0}$. Except possibly in photoproduction (see chapter 7) such fixed ower behaviours are not found.

Fig. The ρ trajectory as deduced from a single pole fit to the $\pi p \rightarrow \pi$ difiereniat cruss section in ref̈. [18.t!

Hon. We shall find in chapter 7 that in those cases where it has been possible to tesi this relation it is reasonably well verified. It is not really a test of Regge pole dominance however sime it follows directly from dispersion relations and the power behaviour $s(t)$. For example with a once subtracted dispersion relation wo haw at lixed:

$$
\begin{equation*}
\operatorname{Re} A(s, t)=s \frac{\mathbf{P}}{\pi} \int_{\mathrm{RH}}^{\infty} \frac{\operatorname{Im} A\left(s^{\prime}, t\right)}{\left(s^{\prime}-s\right) s^{\prime}} \mathrm{d} s^{\prime}+s \frac{\mathrm{P}}{\pi} \int_{\mathrm{LH}}^{-\infty} \frac{\operatorname{Im} A\left(s^{\prime}, t\right)}{\left(s^{\prime}-s\right) s^{\prime}} \mathrm{d} s^{\prime} \tag{4.90}
\end{equation*}
$$

and if $\operatorname{Im} A(s, \eta) \sim s^{\alpha(t)}$ for $s>0$, and we use

$$
\frac{\mathrm{P}}{\pi} \int_{0}^{\infty} \frac{\mathrm{d} s^{\prime}}{s^{\prime}-s^{\prime}} s^{\alpha-1}=-s^{\alpha-1} \cot \pi \alpha
$$

and

$$
\frac{1}{\pi} \int_{0}^{\alpha} \frac{d s^{\prime}}{s^{\prime}+s} s^{\prime \alpha-1}=-s^{\alpha-1} \operatorname{cosec} \pi(c-1)
$$

the result (4.88) follows. The same result is found for any number of subtractions. Thus any success of the phase-energy relation is really just a test of the power behaviour and analyticity rather than of Regge pole dominance.

The other important fact about (4.74) is that the phase is the same for all heliclity amplitudes. Since pharization phenomena depend on helicity amplitudes having different phases (see (7.1)) a single Regge nole can not give rise to polarization. Thus for example the fact that there is a poarization of $10-15 \%$ in $\pi^{-p} p \rightarrow \pi^{\circ} \mathrm{n}$ shows that there must be some other exchange besides the p trajectory ontributing despite the success of the fit in fig. 16. It is of course not $\stackrel{i d}{ }$ icult to think of other contributions which can interfere with the p trajectory (: produce the polariation (sre chapter 7).
f) Factorization. We have already noted that a Regge residue has to hactorias. (2.67), so if only a single Regge pole is involved in a given set of processes we deduce (see fig. 1)

$$
\begin{equation*}
(\mathrm{d} \sigma / \mathrm{dt})_{12-34}^{2}=(\mathrm{d} \sigma / \mathrm{d} t)_{11 \rightarrow 33}(\mathrm{~d} \sigma / \mathrm{d})_{22 \rightarrow 44} \tag{4.01}
\end{equation*}
$$

Unfortunately it is not easy to test this directly because thore are not enough different processes available (p or t have always to be used $\mathfrak{z i}$ ' the target). Moreerer it depends crucially on the dominance of just a single trajtctory. We thall mention some tests in chapter 7. It is however an important constraint on Regse residues.

Another application of factorization is that since $1+2-3+4$ has the same t channel poles as $1+\overline{4}-3+\overline{2}$ (i.e. we just rotate the r:g-t-hand side of fig. 1) the ccatribưion of a given pole to these two processes must be the same apari from a pos.if $\pm \pm$ sign. So if a single trajectory dominates these two cross sections are prediciea o be identical. This is known as 'line reversal symmetry, T' as for caample the P contribution to $p \bar{p} \rightarrow p \bar{p}$ muss be the same as that for pp \quad pp. This also follows from the Pomeranchuk theorem hr ever (see chapter 7 .
g) Dips. We have found that Regge pole amplitudes may vanish at nonsense points (section 6), but that there is some ambiguity about this depending on the presence of fi.ed poies, etc. We shall see in chapter 7 that some but by no means

Hon. We shall find in chapter 7 that in those cases where it has been possible to tesi this relation it is reasonably well verified. It is not really a test of Regge pole dominance however sime it follows directly from dispersion relations and the power behaviour $s(t)$. For example with a once subtracted dispersion relation wo haw at lixed:

$$
\begin{equation*}
\operatorname{Re} A(s, t)=s \frac{\mathbf{P}}{\pi} \int_{\mathrm{RH}}^{\infty} \frac{\operatorname{Im} A\left(s^{\prime}, t\right)}{\left(s^{\prime}-s\right) s^{\prime}} \mathrm{d} s^{\prime}+s \frac{\mathrm{P}}{\pi} \int_{\mathrm{LH}}^{-\infty} \frac{\operatorname{Im} A\left(s^{\prime}, t\right)}{\left(s^{\prime}-s\right) s^{\prime}} \mathrm{d} s^{\prime} \tag{4.90}
\end{equation*}
$$

and if $\operatorname{Im} A(s, \eta) \sim s^{\alpha(t)}$ for $s>0$, and we use

$$
\frac{\mathrm{P}}{\pi} \int_{0}^{\infty} \frac{\mathrm{d} s^{\prime}}{s^{\prime}-s^{\prime}} s^{\alpha-1}=-s^{\alpha-1} \cot \pi \alpha
$$

and

$$
\frac{1}{\pi} \int_{0}^{\alpha} \frac{d s^{\prime}}{s^{\prime}+s} s^{\prime \alpha-1}=-s^{\alpha-1} \operatorname{cosec} \pi(c-1)
$$

the result (4.88) follows. The same result is found for any number of subtractions. Thus any success of the phase-energy relation is really just a test of the power behaviour and analyticity rather than of Regge pole dominance.

The other important fact about (4.74) is that the phase is the same for all heliclity amplitudes. Since pharization phenomena depend on helicity amplitudes having different phases (see (7.1)) a single Regge nole can not give rise to polarization. Thus for example the fact that there is a poarization of $10-15 \%$ in $\pi^{-p} p \rightarrow \pi^{\circ} \mathrm{n}$ shows that there must be some other exchange besides the p trajectory ontributing despite the success of the fit in fig. 16. It is of course not $\stackrel{i d}{ }$ icult to think of other contributions which can interfere with the p trajectory (: produce the polariation (sre chapter 7).
f) Factorization. We have already noted that a Regge residue has to hactorias. (2.67), so if only a single Regge pole is involved in a given set of processes we deduce (see fig. 1)

$$
\begin{equation*}
(\mathrm{d} \sigma / \mathrm{dt})_{12-34}^{2}=(\mathrm{d} \sigma / \mathrm{d} t)_{11 \rightarrow 33}(\mathrm{~d} \sigma / \mathrm{d})_{22 \rightarrow 44} \tag{4.01}
\end{equation*}
$$

Unfortunately it is not easy to test this directly because thore are not enough different processes available (p or t have always to be used $\mathfrak{z i}$ ' the target). Moreerer it depends crucially on the dominance of just a single trajtctory. We thall mention some tests in chapter 7. It is however an important constraint on Regse residues.

Another application of factorization is that since $1+2-3+4$ has the same t channel poles as $1+\overline{4}-3+\overline{2}$ (i.e. we just rotate the r:g-t-hand side of fig. 1) the ccatribưion of a given pole to these two processes must be the same apari from a pos.if $\pm \pm$ sign. So if a single trajectory dominates these two cross sections are prediciea o be identical. This is known as 'line reversal symmetry, T' as for caample the P contribution to $p \bar{p} \rightarrow p \bar{p}$ muss be the same as that for pp \quad pp. This also follows from the Pomeranchuk theorem hr ever (see chapter 7 .
g) Dips. We have found that Regge pole amplitudes may vanish at nonsense points (section 6), but that there is some ambiguity about this depending on the presence of fi.ed poies, etc. We shall see in chapter 7 that some but by no means
all the expected dips occur. Unfortunately there are also other possible explanations of these dips involving Regge cuts, so there is some uncertainty, and thecorrect explanation is still unclear.
h) Exchange degeneracy. In chapter 3 we noted .vidence fo: the degeneracy of opposite signature. It is obvious fr $m(2.39)$ that the identity of $A_{H}^{x}(0)$ and $A_{i=1}^{-i}(d)$ implies that there is no exchange force, i.e. no u-chrnnel discontinuity. This would mean that the residues were identical as well as the trajectories. Obviously the difference between two such exchange degenerate trajectory contributions is proportional to

$$
\begin{equation*}
\left[\frac{\mathrm{e}^{-\mathrm{i} \pi(\alpha-v)}}{2 \sin \pi(\alpha-v)}+\frac{\alpha}{v}\right]-\left[\frac{\mathrm{e}^{-i \pi(\alpha-v)}-}{\sin \pi(\alpha-v)}-\right]=\frac{2}{\sin \pi(\alpha-v)} \tag{4.92}
\end{equation*}
$$

which is purely real. We shall see in chapter 6 that there are some theoretical grounds for expecting this sor: of cancellation to occur.

Exchange degeneracy also implies the absence of fixed poles (since there is no third double spectral function), and that the trajectories will choose nonsense. This is because e.g. an even signature trajectory must have a ghost-killing zerc at $\Leftrightarrow=0$ in a sense amplitude, which must therefore also be present in the exchange degenerate odd-signature trajectory.
i) The Regge pole parameters. It is evident frum the above discussion that there are several characteristic features of Fegge pole exchange which we can hope to observe in the data. But there are many ambiguities, both from the presence of other secondary trajectories and cuts, and from the various choices as to conspitacy or evasion, sense or nonsense coupling, etc. Even when tre have decided about these there are the free parameters of the trajectery function $\alpha(t)$ and the reduced residues $\gamma_{H}(t)$. The former can be predetermined to some extent from the position of the resonances, particularly if one is prepared to limit oneseli to linear trajectories, but the behaviour of $\gamma_{H}(t)$ is almost wholly arbitrary. In a few cases the residues of the particle poles are known coupling constant, but even then there is nu unique prescription for analytic continuation. it is sual to adopt a hypothesis of simplicity, and suppose that once the essential kinemisical and dynarnical factors have been taken care of the reduced residue will be either a constant or a slowly varying function. One factor which will greatly affect this t-dependence is the choice made for s_{0}, since varying it is equivalent to including an extra exponential t factor in the residue. It is obvious that if the residue is given too much arbitrary structure the fit looses its conviction, but how many parameters one should permic oneself is very much a matter of taste

This concludes our survey of the properties of Regge pole , but hefore we can confront these predictions with experiment we need to know : cout the other types of J-plane singularities which may be present, in particular the branch cuts.

CHAPTER 5
REGGE CUTS

5.1. hatroduction

In the preceding chapter we discussed the exchange of a Regge pole, which corresponds to the exchange of a single particle. The subject of this chapter is Regge cuts which, speaking roughly, correspond to the simultaneous exchange of two or
more particles. But wherear we have been able to describe the properties of poles with some confdence all that one can say with certainty about cuts is that they wast e'she, and they have known positions.

In chapter 2 cuts were invoked to remove the incompatibity of the Gribovpomeranchuk fixed pole with the unitarity equation. Other solutions to this provlem have been suggested, such as that the poles become like essential singularities when they are iterated with unitarity [93, 94], but all such suggestions run into the problem that such a singularityr at a nonsense point $J=J_{0}$ would lead to an $s^{J} 0$ behaviour of the scattering amplitude, which is incompatible with the Froissart bound for $/{ }_{0}>1$. A simple pole is allowed because it is cancelled by the zero of the signature factor and so does not contribute to the asymptotic behaviour.

The codfidence that cuts can be invoiked to shield the fixed poles reste mainly on Mandelstam's argument [95] which we shall disruss in the next section. This demonstrates that the same sort of Feynman ciagrams that contribute to the third double spectral fusction, and hence to the fixed poles, also give rise to cuts. There are still two problems, huwever. One is that there are some Feynman diagrims which likewise apyear to produce cuts (the so-called Amati-Fubini-Stargisel! i, AFS, cuts $[96]$) but whose cuts are known to be cancelled by other diagrams. Tney appear on unphysical sheets and do not contribute to the asymptotic behaviour. me can thus not be completely sure that Mandelstam's cuts are not similarly canelled, though the fixed-pole argument gives good reason to believe that they are :ot. The other problem is that we still only know how to evaluate the magnitude of the cut discontinuity in terms of Feymman diagram models. Since few geople nowadays suppose that Lagrangian field theory is ever likely to be the basis of a viable theory of strong interactions this means that there is no agreed method to calculate cuts.

However, some models which do permit one ai leasi to estimte the cuts giren the nput pole parameters have been suggested, and we sha: seseribe and comment on two of these (the absorption and eikonal models) sectiuns: anu 5 . Then me discuss some of the general characteristics of cuts as. dicated b: mench els. In particular we introduce the as yet unsolved probiem of whether th: cut. strong enough to interfere with the poles in such a way as to produce the vaiticudips observed in differential cross sections, or whether these dips are. as discussed in section (4.6), due to nonsense zeros.

In addition to these dynamical Regge cuts there may also be fixed cuts which we give a brief mention in section 7 .

5.2. Regge singularities and Feyn:nan diagrams

The calculation of the asymptotic behaviour of Feynman diagrams has been liscussed by several authors, and comprehensively reviewed in refs. [97, 98]. In this section we shall mainly just quote some of the relevant results, and the reader who is interested in the details should consult ref. [97] or the original works.

We consider a diagram consisting of scalar meson linos of mass m with rertes coupling constant g. The contribution of such a diagram to the scatoring amminde is give: by (neglecting normalization factors)

$$
A(s, n)=\lim _{\epsilon \rightarrow 0} \varepsilon^{m} \frac{d^{4} k_{1} \ldots d^{4} k_{i}}{\prod_{r=1}^{n}\left(q_{r}^{2}-m^{2}+\mathrm{j} \epsilon\right)},
$$

where the or $_{r}$ are the four-moment a the n internal lines; the k_{i} are the internal loop momente (that is independent linear combinations of the q_{x}), and there are m vertices. The particles in such a theory are of course elvmentary, and sinee they are scalar they contribute a Kroneker delta's to the s-chnnel partial wave anplitudes of the form

$$
\begin{equation*}
A_{J}(s)=0^{1} \frac{g^{2}}{s-m^{2}} \tag{array}
\end{equation*}
$$

However if we consider an infinite sequence of ladder diagrams such as fig. 17 it can be shown (ref. [99]) that the ciagram with n rungs contributes at large s

$$
\begin{equation*}
A^{n}(s, t) \sim \frac{g^{2}}{s} \frac{[K(t) \log s]^{n-1}}{(n-1)!} \tag{5.3}
\end{equation*}
$$

where $K(t)$ is a known function (given by the box diagram). So, if we are justifted in supposing that the limit of the sum of the diagrams is the sum of the limits, the sequence gives

$$
A(s, t) \sim \frac{g^{2}}{s} \sum_{n=1}^{\infty} \frac{[K(t) \log s]^{n-1}}{(n-1)!}=s^{2} s^{x(t)}
$$

where $\alpha(t)=-1+K(t)$. So the sum gives us a Regge \mathfrak{j} we 'rehaviour with a trajectory functions which begins at -1 for $t \rightarrow \infty$, and which is cut thove the t threshold This is exactly the same as the behaviour of a trajectory in Yabawa potential scattering which it closely resembles, and the fact that the trajectory end point is at -1 is due to the $1 / s$ behaviour of (5.2).

Fig. 17. An infinite : equence of ladder diagrams wheh sum to give a f-channel Regge pote.
General rules for the asymptotic behaviour of mure romples diagrams have been given [98]. In particular it turns out that for all pianar diagrams (i.e. diagrams which can be drawn in a plane without crossing lines) the behaviour is always of the form

$$
\begin{equation*}
s^{-n}(\log s)^{m} \quad \text { with } \quad n \geqslant 1 . m \geqslant 0 \tag{5.5}
\end{equation*}
$$

This knowledge is not much use to use since, as we have just iten, the Regge behaviour comes from summing infinite sets of diagrans. But it dres indicate that it we were to treat the sides of the ladders in fig. 17 as composite particles we should still probobiy get a Regge pole.

Fig. 18. One of an infinite sequence \quad double-fadder diagrams which might be expecter :o give rise to a Regge cut but does not.

The Regre cuts are surposed to stem from the exchange of two or more Resge poles, so we might try a model surh as fig. 18. Howover it can be shown that each such dhagram has an asymptotic beh. virur $-{ }^{-3} \log s$ independent of N and M, so this shmid also be the hehaviour of the sam. Fhis gives us : fixed-cut like behar... four with $\alpha_{\mathrm{c}}(t)=-3$ for all t.
 stans in hig. is as giving us a Rege pole behaviour, and then apply elastic unitarity in the s-channel to find the discontimity across the two particle cut (fig. 19a), we set $[96]$

$$
\begin{equation*}
\operatorname{Disc}_{2} A(s, t)=\frac{q_{s}}{32 \pi^{2} \sqrt{s}} \int A_{1}\left(s, t_{1}\right) A_{2}^{*}\left(s, t_{2}\right) d \Omega_{s} \tag{5.3}
\end{equation*}
$$

and I we pit each A_{i} is, $\left.l\right)-s^{\alpha_{i}(t)}$ this gives

$$
\begin{equation*}
\operatorname{Disc}_{2} A(s, t) \sim^{\max \left[\alpha_{1}\left(l_{1}\right)+\alpha_{2}\left(t_{2}\right)\right]-1} \tag{5.7}
\end{equation*}
$$

where i_{1} and t_{2} are subject to the constraint

$$
\begin{equation*}
\delta\left(t, t_{1}, t_{2}\right)=-\left(t^{2}+t_{1}^{2}+t_{2}^{2}\right)+2 t_{1} t_{2}+2 t t_{1}+2 t_{2}>0 \tag{5.8}
\end{equation*}
$$

(We shall perform this sort of calculation explicitly below, section 4.) These are the AFS cuts. They are cancelled by the cuntributions of the other uritary disser"ions which can be made through fig. 19a, such as that shown in fig. 19b. Thus the on mass shell AFS cuts are cancelled by the off mass shell parts of the Feymman integration. and the cuts are spurious.

0

Fif, fs. (a) The turapanticle unitarity section offig. 18. (b) A ditferent parition of fig, is which involves 3 yadicle unimarity.

If we wish to avoid this cancellation we must turn to non-planar diagrams [95] The simplest is shown in fig. 20 where we have Reggeon laciders connected by crossus a fach end. Because of the crosses this diagram has a third (su) dowbe spectral function and so i is also involved in the i-channel Gribov-Pomeraarhuk tixed poles. Since it retures a minimum of 4 particles in the swhanei, it whe wo fiously not be present in potential scattering. This has only Regge poies iow suitable wientials like the Yukawa.
in rier to demonstrate more explicity that fig. 18 doas not have a wh and fig. 19 does, one can make use of the Reggcon calculus invented by C riboy 10 p which allows one to work with mixed reynman-Regge pole diagrams. Iere ite shall briefly outline this method [101, 102].

Consider the diagram fig. 21 whese R_{1} and R_{2} are Regge pole atmputuce it terms of the Feynman rules this may be written (neglecting normalization factors)

Fig. 20. An example of a type of diagram which, when summed over all possible numbers of runge, does give rise to a Regge cut.

Fis. 21. The Feynman diagram of tix. 20 with the ladders replaced by Regge poles H_{1} and R_{2}

$$
\begin{equation*}
A(s, t)=\mathrm{i} \lambda^{2} \int \mathrm{~d}^{4} k \frac{\mathrm{~d}^{4} k_{1} \mathrm{~d}^{4} k_{2} R_{1}\left(k \cdot \dot{k}_{2} k\right) R_{2}\left(p_{1}-k_{1}, p_{2}-k_{2}, q-k\right)}{\prod_{m=1}^{S} \mathrm{~d}_{m}} \tag{5.9}
\end{equation*}
$$

where d's are the deaominators corresponding to the internal lines

$$
\begin{align*}
& d_{1}=k_{1}^{2}-m^{2}+i \epsilon \\
& d_{2}=\left(p_{1}-k_{1}\right)^{2}-m^{2}+i c, \text { etc. }
\end{align*}
$$

We then introduce the four-vect, irs

$$
\begin{align*}
& p_{1}^{\prime}=p_{1}-\left(m^{2} / s\right) p_{2} \\
& p_{2}^{\prime}=p_{2}-\left(m^{2} / s\right) p_{1} \tag{5.11}
\end{align*}
$$

which have the property that

$$
\begin{equation*}
p_{1}^{\prime 2}=p_{2}^{\prime 2}=0+0\left(1 / s^{2}\right) ; \quad 8 p_{1}^{\prime} p_{2}^{\prime}=s \tag{5.12}
\end{equation*}
$$

As usual $s=\left(p_{1}+p_{2}\right)^{2}$ and $\left.t=, p_{1}-p_{g}\right)^{2}=q^{2}$, and we can write

$$
\begin{equation*}
q=\frac{t}{s}\left(p_{2}^{\prime}-p_{1}^{\prime}\right)+Q, \tag{5.13}
\end{equation*}
$$

where Q is a vector perpendicular to the plane containing p_{1} and p_{2}. Then following Sudakov [103] we write each of the internal momenta in terms of their component in the plane of ϕ_{1}^{\prime} and p_{2}^{\prime}, and those perpendicular to it, i.e.

$$
\begin{gather*}
\underline{\underline{b}}=\alpha_{\dot{2}}^{\prime}+\beta \hat{p}_{1}^{\prime}+\underline{\underline{b}}_{1} \\
k_{1}=\alpha_{1} p_{2}^{\prime}+\beta_{1} p_{1}^{\prime}+k_{1 \perp} \\
k_{2}=\alpha_{2}^{\prime} p_{1}+\beta p_{1}^{\prime}+k_{2 \downarrow}
\end{gather*}
$$

We then express each of the denominators (5.10) in terms of these variables:

$$
\begin{align*}
& d_{1}=a_{1} \beta_{1} s+k_{1-}^{2}-m^{2}+\mathbf{i} \epsilon \\
& d_{2}=\left(a_{1}-m^{2} / s\right)\left(\beta_{1}-1\right) s+k_{1}^{2}-m^{2}+\mathbf{j} \epsilon, \text { etc. } \tag{5.15}
\end{align*}
$$

and the fintegration volume elements are

$$
\begin{equation*}
\mathrm{d}^{4} k=\frac{1}{2}|s| \mathrm{d} \alpha \mathrm{~d} \beta \mathrm{c}^{2} k_{\perp} \text { etc. } \tag{5.15}
\end{equation*}
$$

We then assume, and this is the crucial simplification, that $R_{1}\left(k_{1} k_{2} k\right)$ is large onIf when the energy variable $s_{1}=\left(k_{1}+k_{2}\right)^{2} \approx 2 k_{1} k_{2}=\beta_{1} \alpha_{2} s$ is large (i.e. of order s), and when the momentum transfer k^{2}, and the 'masses' k_{1}^{2}, k_{2}^{2} are snall (i.e. of order $n_{i}{ }^{2}$); and similarly for R_{2}. Thus we are assuming that the Regge amplitude is peripheral, and that its form factors vanish $\sim\left(k_{i}^{2}\right)^{-1}$ (see ref. [95]). Hence the only important region of integiation in (5.9) is when

$$
\begin{equation*}
k_{1,}^{2}, k_{2_{\perp}}^{2}, k_{\perp}^{2} \sim m^{2} ; \quad \alpha, \beta, \alpha_{1} \sim m^{2} / s ; \quad \text { and } \quad \beta_{1}, \alpha_{2} \sim 1 \tag{5.17}
\end{equation*}
$$

We then take a factorized form for the Regge amplitudes

$$
\begin{gather*}
R_{1}\left(k_{1}, k_{2}, k\right)=g_{1}\left[k_{1}^{2},\left(k-k_{1}\right)^{2}, k^{2}\right] g_{2}\left[k_{2}^{2},\left(k+k_{2}\right)^{2}, k^{2}\right] \xi_{J_{1}}\left(2 k_{1} k_{2}\right)^{J}\left(k^{2}\right) \\
R_{2}\left(p_{1}-k_{1}, p_{2}-k_{2}, q-k\right)=g_{1}^{\prime}\left(\left(p_{1}-k_{1}\right)^{2},\left\{_{1}-k_{1}-q+k\right)^{2},(q-k)^{2}\right) \\
\left.\left.\times g_{2}\left(i p_{2}-k_{2}\right)^{2},\left(p_{2}-k_{2}+q-k\right)^{2},(q-k)^{2}\right) \xi_{J_{2}}\left[2\left(p_{1}-k_{1}\right) \sum_{q}-k_{2}\right)\right]^{2\left(\left(q-k_{2}^{2}\right)\right.}, \tag{5.18}
\end{gather*}
$$

:. ere ξ_{j} are the signature factors, and we have used J_{i} for the positions of the poies (to avoid confusion with the Feynman parameters α). When these are substituted in (5.9), and the restrictions (5.17) are noted, the integrations over α_{1}, Q_{2}, $\beta_{1}, \beta_{2}, a, \beta, k_{1 \perp}$ and $k_{2_{\perp}}$ can be carried out separately, and we end up with.

$$
\begin{equation*}
A(s, t)=\frac{1}{|s|} \int \mathrm{d}^{2} k_{\perp} N_{J_{1} J_{2}}^{2}\left(q, k_{\perp}\right) s^{J_{1}+N_{2}} \xi_{J_{1}} \xi_{J_{2}}, \tag{5.19}
\end{equation*}
$$

where

$$
\mathrm{N}_{J_{1} J_{2}}=\int \mathrm{d}^{2} \dot{k}_{1} \mathrm{~d} \beta_{1} \mathrm{~d} \alpha_{1} \mathrm{~d} \alpha \frac{s^{2} \lambda^{2} g_{1} g_{2}^{\prime} \beta_{1}^{J_{1}}\left(1-\beta_{1}\right)^{v_{2}}}{\prod_{m=1}^{4} d_{m}}
$$

The function $N_{J_{1}} J_{2}$ is the Feynman integral over the cross on the left of fig. 21 , and it appears squared because the right-hand side gives an indentical resuli.
in order to determine the J - phane structure of (5.19) we must make a Frois-sart-Gribov projection, which for spinless scattering is

$$
\begin{equation*}
A_{J}(t)=\frac{1}{\pi} \int^{\infty} D_{s}(s, t) Q_{y}\left(z_{i}\right) \tag{5.21}
\end{equation*}
$$

Now from (5.19)

$$
\begin{equation*}
D_{s}(s, t)=\frac{1}{|s|} \int \mathrm{d}^{2} k_{1} N_{d_{1} d_{2}}^{2}\left(q, k_{1}\right) s^{\Gamma_{1}+J_{2}} \operatorname{Re}\left\{\xi_{J_{1}} \xi_{J_{2}}\right\} \tag{5.42}
\end{equation*}
$$

and using the fact that $Q_{d}\left(z_{f}\right) \sim s^{-J-1}$ we have

$$
A_{J}(l) \propto \int \mathrm{d}^{2} k_{2} \frac{\operatorname{Re}\left\{\xi_{J_{1}} \xi_{J 2}\right\}}{\left.J+1-J_{1}\left(k^{2}\right)-J_{2}(q-k)^{2}\right]}
$$

This gives us the expected cut, and its position is the same as that of the AFS cut (5.7).

It is fairly straightforward in principle to apply this technique to more complicated diagrams wiere there are larger numbers of Regge poles connected by Feynman propagators. One is still left with the problem however that one needs to be able to perform the Feynman integration (5.20) which involves the form factors of the Reggeons, since the couplings $g_{i}, \dot{\xi}_{i}$ are functions of the masses k_{i}^{2}. It is not possible to evaluate the cuts using just the on mass shell properties of the Rege poles.

Fig. 22. (a) The Feynman amplitude for the left side if ifg. 21, with two Reggeon extermat lines. (b) The contour of integration along the reai s_{1} ais in (5.24). The costour may be closed either above or below, but in either case it en loses one of the unitar ty cuts of A_{1}.

The integral for $N_{J_{1}} J_{2}$ is essentiaily an integral over the Feynman ampl tude shown in fig. 22a. If we express it in terms of inv. riants it becomes

$$
\begin{equation*}
N\left(l, t_{1} t_{2}\right)=\int_{-\infty}^{\infty} d s_{1} A_{1}\left(s_{1}, ; t, t_{2}\right) \tag{5.24}
\end{equation*}
$$

where

$$
\begin{equation*}
A_{1}\left(s_{1}, \xi_{1}, t_{2}\right)=\int_{0}^{1} d \beta_{1} \beta_{1}^{I_{1}\left(1-\xi_{1}\right)^{d}} \int_{-\infty}^{\infty} \frac{d v_{1} d k_{1} g_{1} g_{2}}{\frac{4}{\Pi} \epsilon_{m}} \tag{0.25}
\end{equation*}
$$

is the amplitude of fig. 22a apart from the $f^{t} s$ in the numerator. These are due to the spins of the Reggeons and it can be shom that they do not atfect the singularity
streture of A_{1}. The int sral in (5.24) is carried out at fixed t over s_{1}, and one can tha see why it is im; ortant that the diagram should have a cross. For the presence of the cross r ans that A_{1} will have both a right-hand cut corresponding to the sp thresholds, and a left-hand one corresponding to the ip threshohts
 gram $1 / s_{1}^{9}$ for large $" 1$, if there were only a right-hand cut or only a left-hand cut one wuld be able to clcse the contour by a samicircle :n the upper or lower fil plane (respectively) without enclosing any singularities and so conclude that $\hat{N}=0$. It is only the fact that A_{1} has both cuts that gives us a finite answer. In fact if we distort the contour to enclose say the right-hand cut we get (since A_{1} is real maytic)

$$
\begin{equation*}
N\left(t, t_{1} t_{2}\right)=2 i \int_{4 m^{2}}^{\infty} \operatorname{In} A_{1}\left(s_{1}, t_{1} t_{1}, i_{2}\right) \mathrm{d} s_{1} \tag{5.25}
\end{equation*}
$$

It is now fairly obvious that one can generalize the above discussion and obtain the amplitude for the Regge cut in a gr neral two Reggeon diagram like fig, 23 provided that both the amplitudes A_{1} and A_{2} have t oth left- and right-hand cuts. But untortunately there is then no reason o expect that the integral (5.26) will converge i. the amplitude A_{1} has Regge veha riour.

Fig. 23 A general two Reggeon esciange amplitude. which vill give rise to a Regge cut provided A_{1} anc A_{2} both cor ain crosses, as in fip. ? ?

5.3. Phusicat interpreiation

So tar this has just been nathematics, and we must ar it it unde stam the physua meaning of thes requirements on A_{1} and A_{2}. ve can of some idea awot deuteron-deuteron scatering. We expect that to a good approxir. ation 'ats can be
 sent each of the inter ctions by the exchange of a single ieggecis we get diagiains like fig. 24. But fig. 240 where two Reggeons are exchan; red between the same pair of particles, bec mes very unlikely at high energy because the two nucleons do not stay together long enough. This diagram has no third donble spectral function and does not give a cut (oaly an AFS cut). On the other hand ig. 24 c where the two Regreons come from different nucleons can occur at high energies, and this diagram has precisely the structure of fig. 21. One may thus conclude that in general the existence of a cut depends on the structure of the scattering particles - they must break up and reform, virtually [104].

Fig. 24. Denteron deuteron gcatering. (a) A single interaction beween the nuiens repre sentet': y a Regge poie exchange. (b) Double Regee pole exchange between the same par of rucleons. (c) Double Resge pole exchange between different pairs of miteons

There is obviously some relation between the above discussion and Glauber theory [105], but in fact the relation turns out to be a very complicated one. For oxample if one considers π d scatterins, Glauber theory gives (fig. 25)

$$
\begin{equation*}
A_{\pi \mathrm{d}}=G(t)\left(A_{\pi \mathrm{p}}+\dot{A}_{\pi \mathrm{N}}\right)+\int G\left(p^{2}\right) A_{\pi \mathrm{p}} A_{\pi \mathrm{N}} \mathrm{~d}^{2} p \tag{5.2}
\end{equation*}
$$

where G is the deuteron form factor (and represent the fact that the nucleons are off the mass shell). The first terms are the single scatterings on the proton and neutron, while the second term is the shadow correction, and represents the fact that for part of the time one nucleon is behind the other anc so invisiblr. . the plon. This must obviously make the amplitude smaller than the sum of the single scattering terms. It was shown by Gell-Mann and Udgaonkar [106] that the second term of ($5.2^{\prime \prime}$) has a cut like behaviour, and this has been analysed in greater detall by Abers ot al. [107]. However the diagram fig. 25c does r ot have a real cut, only an AFS cui, if the particles are on the mass shell. In order to get a Regge cut we should have to regard the pion as a composite object too. This does not mean that Glauber theory is wrong, at least at low energies, only that it does not give a valld result at asymptotic energies. In fact one can estimate that it will break down wher the energy if of the order of $m_{\pi}\left(m_{N} / \delta\right)^{\frac{1}{2}}$ where δ is the binding-energy of the deuteran [108].

0

0

c

Fig. 25. Diagrams with single and double scattering for pion-deuteron scattermg.
The situation is further complice ed by the fact that the iteration of the potential (the Regge pole) corresponds both to diagrams like fig. 26a in which the potential acts several times between the same pair of particles. and ones like fig. 26 b in which the ordering of the interactions is different, and which nvolve multiple scattering [109, 110]. This appears to contradict what was said above about the improbe ability of multiple scattering between the same pair of particles, but since in Glauber theory the energy of the incident particle is high, and any changes in it due to scattering very small (otherwise the deuteron would break up), we have a car-

a

b

Fig. 26. Two examples of diagrams which involve three Reggeon exchanges, but which tive a different time ardering of the interactions.
talnty the ent which implies an uncertainty in the time ordering of the interatton. Si.tre. 25 and 2 , 6 are equivalent, and the Glauber correction aiready includes some of the multiple (more than two) scattering corrections, but only to the extent that the $\#$. n and p can be regarded as elementary objects incapable of virtual break up. Glauber theory is thus an essentially low energy approximation, and does not seem to provide much of a gutde as to what one should expect for Regge cuts.

But at least one can see that the cuts depend on the scattering particles having a composite structure, just as the Regge pole exchange reflects the compositness of the exchanged particle. However, it is one thing to be convinced of this, and quite wother to turn it into a model for celculating cuts, particularly in circumstances where the composite structure of the particles is a good deal less obvious than it is for the deutercn. See ref. [108].

 represented by a sum of ladders plus twisted laders when signature is taken into account, so giving rise tu the twisted diagrams like (d).

One approach has been tc take into account the Regge pole nature of the scattertug particles by drawing a Reggecn box [104, 111] as in fig. 27a. If these poles were simply "epresented by ladders a.: a fis. 27 b we should have oniy a planar diagram and no cot. But if we remember tat the Regge pole has a signatire so that the s. chamel poles should be represented by fig. 27 c i.e. the sum of a iadder and a twisted adder, then part of what is represented by tig. $27 a$ is fig 27 id which coes ave a cut. This is held by some authors $[101,104]$ to justify the repiacement of the s-chanul polec iv the sum of all the proticles lying on tre trajectory as in fie. 25. These dagrams of course have only AFS cuts, and the author has been unabic to understand how this step is justified. Il does, however, as we shall see in the noxt

Elg. 24 some of the terms involved in fig. 27 (a) when the two direct ciannel Rey secme represerted by the particles which lie on them, i.e particles a_{1}, a_{2}, a_{4}, and b_{1}, A_{2}, a_{3}
sections, lead to a detinite preserintion for culoulating cuts which can be compared with experiment.

So far we have described the behaviour of the cuta in the J plane, but of course thoy can atso be interpereted in the f-plane [11)]. I they are to ahteld the Gribov* Ponemachuk fixed polea we requite that the branch point ahould be at the leading

 of mass m, lying on a trajectory $a(0)$ meh that $a\left(m^{2}\right)=0$, the highest nonmense point is at $J=-1$, so we muet have

$$
\begin{equation*}
a_{c}\left(4 m^{2}\right)-1 \tag{15.28}
\end{equation*}
$$

The condition (5.7) for two identical trajectoric lead to (see (5.87))

$$
\begin{equation*}
a_{\mathrm{c}}(l)=2 a(t / 4)-1 \tag{5,29}
\end{equation*}
$$

which satisties (5.28). With unequal massen the cut structure im more complicated however (see refs. [113, 114]).

In the t plane we have the inverse function to $a_{c}(t)$, namely $t_{\mathrm{e}}(J)$ dofined such that

$$
\begin{equation*}
O_{\mathrm{c}}\left[t_{\mathrm{c}}(N)\right]=\lambda \tag{5.30}
\end{equation*}
$$

T .-Irom $(5.28) t_{\mathrm{c}}(-1)=4 \mathrm{~m}^{2}$. As J is increased $\left(\mathrm{rom}-1, \mathrm{t}_{\mathrm{c}}\right.$ moves atong the elastic branch cut until the iirst ineiastic branch point i_{1} (say) is reached. At this polet $t_{c}(J)$ paeees through the inelastic branch point onto the urphysical sheet, its work of preventing the elastic uritarity equation (2.61) from generatigg an essential singularity being complete [112], and so $a_{c}(t)$ hat a branch point at I_{1}, where ${ }^{4}(\mathbb{J}) \quad$ if . This means that the cut disconninuity $A(J, 0)$ of (2.54) has the trelastic branc. point. If the elastic untarity equation is to hotd Δ mum vanishas $t \cdots{ }^{\prime} \mathrm{e}$ es.

Inverting this result we get

$$
\begin{equation*}
\operatorname{sun}_{\int \rightarrow a_{c}(n)}\left[4-a_{c}(n]^{5}\right. \tag{3.32}
\end{equation*}
$$

which means that the cat discontinuity must be singular and vanish at the end point of integration in (2.54). Hence the leating asymptotic behaviour of the cut term will be (see section 27)
 selves are generated by unitarity in the s-channel. The incorporation of t-chame: unitarity requires atding all the iterations of fic. 21 as shown in fig. 29 . In fact such a series is also strictly necessary to eliminate the Gribov- Pomeranchuh sith gularity properly, and the problem of calculating such a sum as described in ref. [:15].

fin. 20. The sum of iterated, crossed boxes which results when d channel unta "ity is apphed to fig. 2l.

5.4. The Reggeized absorption model

The hegreized absorption model [104, 116,117$]$ may be used for any helabic reaction involving the exchange of quantum numbers. One uses a Regge pole to carry the quantum numbers, but also includes the modifications caused by elastic scattering in the initial and final states, as in fig. 30 . Since the elastic ampiitudes are predominantly inaginary the effect is to reduce the contributions of the lower partiai waves, which corresponds physically to the absorption of the inm coming or outgoing particles into channels other than the one being considerea. One may of course use the elastic scattering amplitude, if it is known, directly, but for our purposes it is more illuminating to represent it by its Regge pole, the Pomeranchon. Fig. 30 then looks like a two-Reggeon cut (albeli an AFS one).

Fig. 30. The absorptive correction to a single Resge pole exchange, representing (a) final whit interactiong or (b) initial state interactions. (c) gives the labels wed for the partiotes, in (3.37), P_{1} being the Regge pole, and P_{2} the Pomeranchon exchange amplitude

In detail the hypothesis is that one may write for the sochancl partial wave amplitude for the process channel a (particles $1+2$) ormmel: iparlicles 3,4) in the form of a matrix roduct in the space of s-chann: helicity states

$$
A_{j}^{a b}(s)=\left(S_{j}^{a a}(s)\right)^{\frac{1}{2}} A_{j}^{a b \mathrm{P}_{1}}(s)\left(S_{j}^{b b}(\omega)\right)^{b}
$$

Where $A_{j}^{a b}{ }_{1}(s)$ is the partial wave projection into the s-channel of the t-channel Regge pole carrying the quantum numbers, and $S^{a a}$ is the partial wave ., matriv for dlastic scattering in the incoming channel, etc. If we put

$$
\begin{equation*}
s_{f}^{a a}(s) \approx 1+21 \rho^{a a}(s) A_{j}^{a a \mathrm{P} 2(s)} \tag{5.35}
\end{equation*}
$$

 projection of the P_{2} exchange amplitude fand use a similar expression for $\mathrm{S}^{b /}$, we set, exunding the square roots

The fros torm ropresents the Regge pole fxchange wht the ger, wid thirt ar tw haricle cuts due to the exchange of the Regge pole with a pomer.anchon. From sy the tirst the first of these the full cut contribution is (writing aut the buplota expticitig - see fig. 30c)
$A_{H_{s}}^{\text {cut }}(s, n)$
where

$$
\begin{equation*}
\mu^{-} \mu_{1}-\mu_{2} \text { and } \mu^{*}=\mu_{y} * \mu_{4} \tag{5.30}
\end{equation*}
$$

If we perform the p.rtial wave projection of the polo amplitudes (dropping the channel labels for simplicity) we get
where $\mu^{\prime \prime}=\mu_{5}-\mu_{6}$ and z_{1} and z_{2} are the cosince of the acattering angles beiween the init'al and intermediate, and intermediate and inal states, respectively. which therefore satisiy the addition theorem

$$
z_{1}=2 z_{2}+\left(1-2^{2}\right)^{\frac{1}{2}}\left(1-z^{2}\right)^{\frac{1}{2}} \cos \phi_{1}
$$

where ϕ_{1} is the azimuthal angle between the directions of motion the initial and intermediate states (ig. 31). But [104]

where

$$
\Delta=1-z_{s}^{2}-z_{1}^{2}-z_{2}^{2}+z_{s} z_{1}^{2}
$$

$\theta(A)$ is the step function, and the azimuthal angles ϕ_{i} satisfy

Fig. 31. The angles between the incoming centre of mass momentum 12 , the intermetiat

sbou wine the seimuthal angle 0 between 4_{12} and 4_{56} is measured.

$$
\begin{aligned}
& e^{i \alpha_{2},\left(z, z z_{2}+1 \Delta^{\frac{1}{2}}\right)\left(1-z_{2}^{2}\right)^{-\frac{1}{2}}\left(1-z^{2}\right)^{-\frac{1}{3}}}
\end{aligned}
$$

$$
\begin{align*}
& e^{1 t_{3}}=\left(-z+x_{1} x_{2}-1 A^{\frac{1}{2}}\right)\left(1-x_{1}^{2}\right)^{-\frac{1}{2}}\left(1-x_{2}^{2}\right)^{-\frac{1}{2}} \text {, } \tag{5.42}
\end{align*}
$$

$30(5.39)$ sinuplifies to

$$
\begin{align*}
& \times \frac{\theta(\Delta)}{\Delta^{\prime}} \cos \left(\mu \phi_{1}+\mu^{\prime} \phi_{2}+\mu^{\prime \prime} \phi_{3}\right) . \tag{5.43}
\end{align*}
$$

This gives us a complete prescriptica for the cut amplitude in terme of the pole amplitudes.

Thore are several ways of approximating (5.43) to give simple analytic expresand for the cuts. For large s and small t we may write for each z in (5.43)

$$
\begin{equation*}
a=1+2 t_{i} s, \quad z_{1}=1+2 t_{1} / s, \quad z_{2} \approx 1+2 t_{2} / s \tag{5.44}
\end{equation*}
$$

and if we express the Recge poie terms as exponentials in t we can use the fact that [14]
where

$$
\begin{equation*}
\kappa=-\left(t^{2}+t_{1}^{2}+t_{2}^{2}\right)+2\left(t t_{1}+t t_{2}+t_{1} i_{2}\right)+4 t t_{1} t_{2} / s \tag{5.46}
\end{equation*}
$$

and

$$
\begin{equation*}
A=\left[b_{1}^{2}+\dot{b}_{2}^{2}+2 b_{1} b_{2} z_{4}\right]^{\frac{1}{2}} \tag{5.47}
\end{equation*}
$$

Tolirat order int/s this gives

$$
(5.45)=\frac{e^{\left.b_{1} b_{2} t / b_{1}+b_{2}\right)}}{\left(b_{1}+b_{2}\right)}
$$

The unror uction of say a factor t, intc the integrand of (5.45) is equivalent to differeataing it with respect to: and othe integral is met the right-hand side of (5.48) differentiated with respect o. So in general if the integrand is writteit as a polyomial times and exponental we have [119]

This is sufficiently general to embrace all the cases likely to be of interest excey when there is a pole very close to $:=0$. In practice this applias only to the pion - for which see ref. [104].

To first order in $t / s, \phi_{1}+\phi_{2}=-\phi_{3}$. The dominant terms in the sum over $\mu_{5} \mu_{8}$ will be those for which there is no helicity Alp in the rastic amplituda, i.e. $\mu^{4}=\mu^{n}$, and so do not vanish in the Lorward direction. If we knep fust these terms the cosine factor in (5.43) beccimes just cos $\left(\mu-\mu^{\prime}\right) \phi_{2}$.

If for example we consider a non -Alp amplitude $\mu * \mu^{\prime}=\mu^{\prime \prime}=0$ and write the pole terms in the form

$$
\begin{equation*}
A_{H_{s}}^{P_{1}}\left(s, z_{1}\right)=-G_{1} e^{b_{1} t_{1}}\left(\sum_{n} a_{n}^{1} t_{1}^{n}\right) e^{-\frac{1}{2} i m a_{1}\left(t_{1}\right)}\left(s / s_{0}\right)_{1}^{\alpha_{1}\left(t_{1}\right)} \tag{5.50}
\end{equation*}
$$

(where we have absorbed all the t dependence of the restue into an ex onential times a polynomial in t, but have included the phise of the signatu: wactor explicitiy) and a similar term for $A^{P_{2}}$, and use a linear : jroximation or the irajectories

$$
\begin{equation*}
\alpha_{i}(t)=\alpha_{i}(0)+\alpha_{i}^{\prime} \tag{5.51}
\end{equation*}
$$

we find

$$
\begin{array}{r}
A_{H_{s}}^{\text {cut }}(s, t) \cdot \frac{1}{i 6 \pi s_{0}}-G_{1} G_{2}\left(\frac{s}{s_{v}}\right)^{\alpha_{1}(0)+\alpha_{2}(0)-1} \sum_{n, m} a_{n}^{1} a_{m}^{2} \frac{\partial^{n}}{\partial c_{1}^{n}} \frac{\partial^{m}}{\partial c_{2}^{m}} \\
 \tag{5.52}\\
\times \frac{\mathrm{e}^{c_{1} c_{2} t /\left(c_{1}+c_{2}\right)}}{c_{1}+c_{2}} \mathrm{e}^{-\frac{1}{2} 1 \pi\left(\alpha_{1}(0)+o_{2}(0)\right)}
\end{array}
$$

where

$$
\begin{equation*}
c_{i} \equiv b_{i}+\alpha_{i}^{\prime}\left[\log \left(s_{i} / s_{0}\right)-\frac{1}{2} i \pi\right] . \tag{0.53}
\end{equation*}
$$

The large s dependence of this expression is

$$
\begin{equation*}
A_{H_{s}}^{\mathrm{cut}_{s}}(s, t) \sim\left(\frac{s}{s_{0}}\right)^{\alpha_{c}(t)}\left[\log \left(\frac{s}{s_{0}}\right)\right]^{-1} \tag{5.54}
\end{equation*}
$$

where the position of the cut is

$$
\begin{equation*}
\alpha_{c}()=\alpha_{1}(0)+\alpha_{2}(0)-1+\frac{\alpha_{1}^{\prime} \alpha_{2}^{\prime}}{\alpha_{1}^{\prime}+\alpha_{2}^{\prime}} t \tag{5.55}
\end{equation*}
$$

The reader may readily convince himself that this co. responds to (5.7) i.e.

$$
\begin{equation*}
\alpha_{c}(t)=\max \left[\alpha_{1}\left(t_{1}\right)+\alpha_{2}\left(t_{2}\right)-1\right] \tag{5.56}
\end{equation*}
$$

where t_{1}, i_{2} and t are relater by the solid angle condition (5.46) in the limit $s \rightarrow \infty$, i.e. $3\left(t, t_{1} t_{2}\right)=0$ (see (5.8)) or

$$
\begin{equation*}
\sqrt{-t_{1}}+\sqrt{-t_{2}}=\sqrt{m t} \tag{5.57}
\end{equation*}
$$

and when the trajectoriss wave the linear form (5.51).

If the slopes of the trajectories are the same we get

$$
\begin{equation*}
\alpha_{\mathrm{c}}(t)=\alpha_{1}(0)+\alpha_{2}(0)-1+\frac{1}{b} \alpha^{\prime} t \tag{5.58}
\end{equation*}
$$

so the slope of the cut is swaller than that of the pole. Since for the Pomeranchon ye have $a_{2}(0)=1$ the cu: is

$$
\begin{equation*}
a_{c}(t)=\alpha_{1}(0)+\frac{1}{2} \alpha^{\prime} t \tag{5.59}
\end{equation*}
$$

so tive cut coincides with the pole at $t=0$, and lies above if for $t<0$. Since all other poies have $a(0)<1$ the dominant cut in any reaction will always be that generated by the Pomeranchon together with the pole which carries the quantum numbers.

We also notice from (5.52) that the asymptotic phase of the amplitude is given by the product of the phases of the poles at $t=0$. This is in agreement with the results of the Reggeon calculus (5.19). In fact since $A^{\text {Pole }}(-s, t)=d A^{P}(s, t)$ from the signature factor, it is clear from (5.43) that the signature of the cut is

$$
\begin{equation*}
{ }^{x} \mathrm{c}=\alpha_{1}^{\prime} 2 \tag{5.60}
\end{equation*}
$$

This also follows from (5.19).
This result for the phase is to be contrasted with that of the AFS cuts (5.6), which arise if fig. 30 is interpreted as a unitarity diagram. We then get instead of (5.36) [120]

$$
\begin{equation*}
\operatorname{Im} A_{J}^{\operatorname{cut} a b}(t)=\operatorname{Re\rho } \rho_{(s)}^{a a}\left[A_{J}^{\left.a a \mathrm{P}_{2}(s)\right] \cdot A_{J}^{a b \mathrm{P}_{1}}(s)}\right. \tag{5.61}
\end{equation*}
$$

Since the elastic amplitude is almost pure imaginary for $t \approx 0$ the complex conjugation in (5.8) ctanges the sign of the imaginary part of the amplitude relative to (6.36). This sign is clearly of great importance if we ire obtain a destructive interference between pole and cut to produce dips. Thi sign (5.36) is supported by the Reggeon diagram technique.

If the elastic amplitude is approximated by the Pomeranchon with of 0 ; 1 , we may write

$$
\begin{equation*}
A_{H}^{\mathrm{P}_{2}}(s, t)=i s_{\mathrm{O}} \sigma^{\mathrm{oot}}\left(\frac{s}{s_{\mathrm{O}}}\right)^{\epsilon_{2}^{c_{2} t}} \tag{5.62}
\end{equation*}
$$

where we have used the optical theofem (2.8) to relate the imaginary part of the amplitude to the total cross section. This gives, from (5.52),

$$
\begin{equation*}
A_{H}^{\mathrm{cut}}(s, t)=\frac{\sigma^{\mathrm{tot}}}{16 n} G_{1}\left(\frac{s}{s_{0}}\right)^{\alpha_{1}(0)} \sum_{n} a_{n}^{1} \frac{\partial^{n}}{\partial c_{1}^{n}}\left[\frac{c_{1} c_{2} t / \mathrm{e}^{\left(c_{1}+c_{2}\right)}}{c_{1}+c_{2}}\right] e^{-\frac{1}{2} \mathrm{i} \pi \alpha_{1}(0)} \tag{5.63}
\end{equation*}
$$

This is a very convenient analutic annroximation for many purposes.
Of : ourse (5.43) gives us the cut amplitude directly. If we want to know the cu: discontinuity we can write the Sommerield-W2*son transform (leaving out various lactors - compare (2.54)) as

$$
\begin{equation*}
A_{H}^{c u t}(s, t)=16 \pi \int^{\alpha_{c}} \mathrm{~d}^{\prime} A_{H}(J, t)\left(-s / s_{\mathrm{O}}\right)^{J} \tag{5.64}
\end{equation*}
$$

and puttirg

$$
\begin{equation*}
A^{\text {Pole }_{(s, t)}=G(t)\left(s / s_{0}\right)^{\alpha(t)}} \tag{5.65}
\end{equation*}
$$

in (5.43) we get
$\Delta_{H}(J, t)=\frac{1 p(s)}{32 \pi^{2}} \int_{-1}^{1} \mathrm{~d} z_{1} \int_{-1}^{1} \mathrm{~d} z_{2} G_{1}\left(t_{1}\right) G_{2}\left(t_{2}\right)$

$$
\begin{equation*}
\times \frac{\theta(\Delta)}{\Delta^{\frac{1}{2}}} \cos \left(\mu \phi_{1}+\mu^{\prime} \phi_{2}+\mu^{*} \phi_{3}\right) \delta\left(J-\alpha_{1}(t)-\alpha_{2}(t)\right) \tag{5,66}
\end{equation*}
$$

Note th: is in gen ral this discontinuity does not satisfy the t-channel unitarity condition (5.32).

Although the absorption model has produced for us a cut which has the phase and position which we articipated from the Regreon calculus, the diagram fig. 30 from which we started is definitely planar, and so the model only makes sense if we remember that the sides of fig. 30 are supposed to correspond to the twisted propagators of fig. 27 . The Reggeons in the direct channel will presumably carry other particles besides the intermediate state $5+6$ (as in fig. 28). In principal one should try and include these by adding the corresponding diagrams individually, but a commonly employed appro-mation $[104,116]$ is simply to multiply the righthand side of (5.48) by some number $\lambda>1$ to represent the addition of these other graphs. But these other diagrams have higher thresholds and it would seem that λ should really be an increasing function of s. If it were, hnwever, this additional; dependenc a would alter the cut position (5.55). And indeec. tnere is no reason to expect the suw (5.26) to converge [108].

There are also other worries, such as the fact that we have to take the complete fig. 30 , not just the part corresponding to the twisted propagator fig. 27d. Also since the Regge pole term by itself has an imaginary part it inust already include some absorption (in the sense of an optical potential, see ref. [111]). Thus although the absorptive prescription has the merits of precision and simplicity, with a physical-seeming interpretation in terms of Glauber rescattering; as well as giving cuts of the expected position and phase, there does not seem to be any compelling reason to accept it as giving a reliable quantitative estimate of the magnitude of a cut.

It also suffers from the disac.vantage of being suitable only for inelastic processes, and gives only a two Reggeon cut. The eikonal model of the next section suggests z way of overcoming both these restrictions, however.

5.5. The cikonal model

This model [111] makes use of the semi-classical impact parameter technique which is appropriate for elastic scattering processes at high energies when large numbers of partial waves a e involved.

The s-channel partiai wave series

$$
\begin{equation*}
A_{H_{s}}(s, t)=16 \pi \sum_{J=M}^{\infty}(2 J+1) A_{H J}(s) d_{\mu \mu^{\prime}}^{J}\left(z_{s}\right) \tag{5.67}
\end{equation*}
$$

may be approximated at high energies and small angles $(s \gg t$) and large $d \mathrm{by}$ making the replacement (see ref. [121])

$$
\begin{equation*}
{ }_{\mu \mu^{\prime}}^{J}(\theta) \approx J_{\mu}\left(\left(J+\frac{1}{2}\right) A\right), \tag{5.68}
\end{equation*}
$$

where : $\left.\right|^{|\mu-\mu|}$ and $J_{;}$is a Bessel function Since $\cos \theta: 1+\ell / 2 a^{2}$ we can put $y=\left(-i 4^{2}\right)^{2}$. We introduce the impact parameter b by the expression

$$
\begin{equation*}
J=q_{s} b-\frac{1}{2} \tag{5.69}
\end{equation*}
$$

Classically this corresponds to the closeness of approach of a particle with angular momenta d to the target centre (see fig. 32). If we then make the replacement

$$
\begin{equation*}
\sum_{J}=\int_{0}^{\infty} q_{s} \mathrm{~d} b \tag{5.70}
\end{equation*}
$$

(5.67) becomes

$$
A_{H_{s}}(s, t)=16 \pi \int_{0}^{\infty} q_{s} \mathrm{~d} b 2 q_{s} b A_{H J}(s) J_{i}(b \sqrt{-g}) .
$$

Fig. 32. The impact parametel at which a particle, nomenturn q_{s}, passes through the target.

Then we can write the partia: wave amplitudes in teras of the phase shift 0 . (s)

$$
\begin{equation*}
A_{H}(s)=\frac{\mathrm{e}^{2 \mathrm{j} \delta_{A}(s)}-1}{2 H M} \tag{5.72}
\end{equation*}
$$

and define the elkonal phase, , i.e. the pha'e shift for scatterim; it a given impact parameter, by

$$
\begin{equation*}
x\left(s, b^{2}\right) \equiv 20_{q_{s} b-\frac{1}{2}}(s) \tag{5.73}
\end{equation*}
$$

Physimally this means that we are supposing that each part of the incident particio's wave front passes straight the ough the scattering potential at its impact parameier. and is altered only in phase, not direction. This is why the resuit is oniy valid fur large energies near the forward direction.

Combining (5.71), (5.72) an 1 (5.73) we get

$$
\begin{equation*}
A_{H_{s}}(s, t)=18 \pi 7_{s} \sqrt{s} \int_{0}^{\infty} b \mathrm{~d} b\left[1-e^{i x\left(s, b^{2}\right)}\right] d_{\mu}(b-a) \tag{5.74}
\end{equation*}
$$

Note that this is not the same is a Fourier-Bessel transform since X is not the exact eikonal phase but ic giver by (5.73). Finally we expand the exponential in (5.24) in powers of x and get

$$
A_{H_{s}}(s, t)=8 \pi q_{s} \sqrt{s} \int_{0}^{\infty} y \mathrm{~d} b\left[x+\frac{\vdots x^{2}}{2}-\frac{x^{3}}{3} \ldots-\frac{\left(i y^{n}\right.}{n!} \ldots\right]{ }_{n}(b)
$$

The crucial step in connecting this with Regse theory is then to identify the Regge pole exchange ampitude with the first term of (5.75), i.e.

$$
\begin{equation*}
\stackrel{A}{H}_{s}^{p}(s, t)=8 \pi q_{s} \sqrt{s} \int_{0}^{\infty} b d b x\left(s, b^{2}\right) d_{\mu}(b r=t) \tag{5.76}
\end{equation*}
$$

The Fourier-Beasel inverse of this gives us the elkonal phase

$$
\begin{equation*}
x\left(s, b^{2}\right)=\frac{1}{8 \pi q_{s} \sqrt{s}} \int_{-\infty}^{0} \frac{1}{2} \mathrm{~d} t J_{\bar{\mu}}(b \sqrt{-t}) A_{H_{s}}^{\mathbf{P}}(s, t) \tag{5.77}
\end{equation*}
$$

so X is determined by the Regge pole parameters.
Tue two particle exchange cut is then given by the second term of (5.75) i.e.

$$
\begin{equation*}
A_{H_{s}}^{\operatorname{cvt}(2)}(s, t)=\mathrm{i} 4 \pi q_{s} \sqrt{s} \int_{0}^{\infty} b \mathrm{~d} b \chi^{2}\left(s, b^{2}\right) J_{\mu_{2}}(b \sqrt{-t}) \tag{5.78}
\end{equation*}
$$

which when we substitute (5.77) for X becomes (remembering the helicity summn* tion, see (5.39))

$$
\begin{align*}
A_{H_{s}}^{\mathrm{cu}(2)}(s, t)=\frac{\mathrm{i}}{16 \pi q_{s} \sqrt{s}} & \sum \mu_{\mu^{n}} \int_{-\infty}^{0} \frac{1}{2} \mathrm{~d} t_{1} \int_{-\infty}^{0} \frac{1}{2} \mathrm{~d} t_{2} \int_{0}^{\infty} b \mathrm{~d} b J_{\left|\mu-\mu^{\prime \prime}\right|}\left(b \sqrt{-t_{1}}\right) \\
& \times A_{H_{s}}^{\mathrm{P}}\left(s, t_{1}\right) J_{\left.\left|\mu^{n}-\mu^{\prime}\right|^{(b \sqrt{-t}}\right)} A_{H_{s}}^{\mathbf{P}}\left(s, t_{2}\right) J_{\bar{\mu}}(b \sqrt{-t}) \tag{5.79}
\end{align*}
$$

Usually for clastic scattering we are interested mainly in non-fip amplitudes, since there do not vanish in the forward direciion, and we can use the equivalent result to (5.40), viz. [104]

$$
\begin{equation*}
\int_{0}^{\infty} b \mathrm{~d} b J_{0}\left(b \sqrt{-t_{1}}\right) J_{0}\left(b \sqrt{-t_{2}}\right) J_{0}(b \sqrt{-t})=\frac{2}{\pi} \frac{\theta(\delta)}{\delta^{\frac{1}{2}}} \tag{5.80}
\end{equation*}
$$

where δ is defined in (5.8), so we end up with

$$
\begin{equation*}
A_{H_{s}}^{\operatorname{cut}(2)}(s, t)=\frac{1}{32 \pi^{2} q_{s} \sqrt{s}} \int_{-\infty}^{0} \mathrm{~d} t_{1} \int_{-\infty}^{0} d t_{2} A_{H_{s}}^{P}\left(s, t_{1}\right) A_{H_{s}}^{\mathrm{P}}\left(s, t_{2} ; \frac{\theta(\delta)}{8^{\frac{1}{2}}}\right. \tag{5.81}
\end{equation*}
$$

This is identical with che abscrptive prescription (5.43) in the limit (5.44), $s \rightarrow \infty$ and $\mu=\mu^{\prime}=\mu^{\prime \prime}=0$.

What is more (5.75) tells us how to calculate the cut stemming frum the exchange of any number of poles. For instance for 3 poles we have

$$
\begin{equation*}
A_{H_{s}}^{\operatorname{cut}(3)}(s, t)=-\frac{8 \pi q_{S} \sqrt{s}}{3!} \int_{0}^{\infty} b \mathrm{~d} b \mathrm{X}^{3} J_{\bar{\mu}}(b: \sqrt{-t}) \tag{5.82}
\end{equation*}
$$

which substituting (5.81) for the x^{2} part and (5.77) for x, and usiag (5.80) again, gives

$$
\begin{equation*}
A_{H}^{\operatorname{cut}(3)}(s, t)=\frac{2 \mathrm{i}}{3!} \frac{1}{16 \pi^{2} q_{s} \sqrt{s}} \int_{-\infty}^{0} \mathrm{~d} t_{1} \int_{-\infty}^{0} \mathrm{~d} t_{2} \frac{\theta(\delta)}{\delta^{\frac{1}{2}}} A_{H}^{\operatorname{cut}(2)}\left(s, t_{1}\right) A_{H}^{P}\left(s, t_{2}\right) \tag{5.83}
\end{equation*}
$$

And this process can obviously ke repeated for any number of poles. Thus st we approsmate the single pole amplifude by

$$
A_{H_{s}}^{\mathrm{p}}(s, \eta):-c\left(s / s_{0}\right)^{\alpha(0)} e^{c t} e^{-\frac{1}{2} b \alpha(0)}
$$

Wthe given by (5.53) we get for the n-particle cut

$$
\begin{align*}
& A_{H}^{(\operatorname{cs} \cdot n)}(s, t)=(-1)^{n+1} \frac{1}{n n!}\left(\frac{G}{26 \pi \sqrt{s} q_{s} c}\right)^{n-1} G\left(\frac{s}{s_{o}} \mathrm{e}^{-\frac{1}{2} \mathrm{i} \pi}\right)^{n Q(0)} \mathrm{e}^{(\mathrm{c} / n) t} \tag{5.84}
\end{align*}
$$

where the position of the cut is

$$
\begin{equation*}
\alpha_{c}^{n}(t)=n \alpha(0)+\frac{\alpha^{\prime}}{n} t-n+1 \tag{5.82}
\end{equation*}
$$

For the dominant Pomeranchon we have

$$
\begin{equation*}
\alpha_{c}^{n}(t)=1+\frac{\alpha^{\prime}}{n} t, \tag{5.83}
\end{equation*}
$$

so all the P-exchange branch points coalesce at $t=0$, and the cut slopes get smaller as n is increased. And using (5.62) we get

$$
\begin{equation*}
A^{\operatorname{cut}(n)}(s, f)=\frac{\mathrm{i} s \alpha^{\mathrm{tot}}}{n n!}\left(\frac{-\sigma^{\mathrm{tot}}}{8 \pi c}\right)^{n-1} \rho^{(c / n) /} \tag{5.84}
\end{equation*}
$$

so the sign of the various cuts alternates.
It is interesting to estimate the size of these cuts relative to the p pore. For example in NN elastic scattering we can take $\sigma^{\text {tot }}=40 \mathrm{mb}$ and $c=56 \mathrm{~m}-2$ ai nachine energies, so the ratio is

$$
A^{\mathrm{P}}: A^{\mathrm{cut}(2)} \approx 5: 1 \quad \text { at } \quad t=0
$$

and the 3-particle cut is only about 0.5% of the pole. Yence at $t=0$ we can expect the pole tu dominate. But the different t dependences of the various te. ms means that the magnitude of the cut is comparable to that of the pole at $t \approx-0.65 \mathrm{GeV}^{2}[118]$.

II we combine the ahsorptive idea for quantum number exchange, with this eikonal method for mulu-Pomeranchon exchange we can calculate the cuts due to the exchange of any number of poles whether identical or not. Note that there are two cut terms in (536) i.e. Iigs. 30a and 30b, and one must add all the possible permutations of the p's and the other Regge poles to get consistent results.

Unfortunately the justification for the eikonal method is no clearer than it is for the absorption method, however. In potential scattering the eikonal phase is given by inserting the Borr approximation for the pole in (5.77) [111]. Thus the eikonal method rests on the identification of the Regge pole amplitude with a relativistic Born-approximation. It has been demonstrated [12?] (at least to some approximation) the the eikonal expansion corresponds, in a field-theoretic sense, to the lade! sum of diagrams with and without crossed rungs, as in fig. 33, where the rugs epregent the Born approximition. Thus part of each contribution would seem: '1 come from uncrossed diagrams whicin do not contribute to the cuts, and

Fig. 33. The sequence of crossed and uncressed "eynman graphs which aro summed the eikonal approximation ?. Mrding to ref. [122].
should presumably be contained instead in the Regre poles. The validity of thr identification of the Regge pole with the Born approximation thus seems doubt wi.

5.6. General *roperties of Regge cuts

Even if we can not have complete confidence in the models of tho previous sec* tions, they do permit us to draw some reasonably firm conclusions about the nature of Regge cuts:
a) Position. Tle position of the branch poin: due to the exchange of n Reggeons $\alpha_{i}(t) i=1 \ldots n$ is at

$$
\begin{equation*}
\alpha_{c}^{(n)}(t)=\max \left\{\sum_{i=1}^{n} \alpha_{i}\left(t_{i}\right)-n+1\right\} \tag{5.85}
\end{equation*}
$$

where the t_{i} are related by the addition theorem generalization of (5.57)

$$
\begin{equation*}
\sum_{i=1}^{n} \sqrt{-t_{i}}=\sqrt{-t} \tag{5,86}
\end{equation*}
$$

If the trajectories are identical this becomes

$$
\begin{equation*}
\alpha_{e}^{n}(t)=n a(t, n)-n+1 \tag{1589}
\end{equation*}
$$

while if they are linear

$$
\begin{equation*}
a_{c}^{n}(a)=n a(0)-n+1+\frac{Q^{\prime}}{n}: \tag{5,84}
\end{equation*}
$$

b) Phase. The signature of the cut is the product of the signatures of the poles (see (5.60))

$$
\begin{equation*}
v^{n}=\prod_{i=1}^{n} t_{i} \tag{5.84}
\end{equation*}
$$

and if all the poles are identical the asymptotic $\log s \rightarrow \infty$ phase is $\mathrm{e}^{-\frac{1}{2} i \pi \alpha_{c}^{n}(i)}$.
c) General form. There is a logarithmic factor $\left[\log \left(s / s_{0}\right)\right]^{-n+1}$ for each pole so that the contributions of the higher order cuts vanish relative to those of the lower order by sume fower of log s. However this factor must be wrong for $n=i$ because it violates t-channel unitarity (see (5.33)), but the required correction δ is not known.

From this we can deduce a general expression for a cut contribution from n identicai trajectorles

$$
\begin{equation*}
A_{H_{s}}^{\operatorname{cut}(n)}(s, t)=\xi_{\mu, \mu^{\prime}}\left(z_{s}\right) F(t)\left(s / s_{0}\right)_{c}^{\alpha_{c}(t)} e^{-\frac{1}{2} \mathrm{i} \pi \alpha_{c}(t)}\left[\log \left(s / s_{0}\right)+d\right]^{-n+1} \tag{5.90}
\end{equation*}
$$

where $\left.F^{(} t\right)$ is an arbitray \pm anction free of kinematical singularities, d is a constart, and $\alpha_{c}^{n(t)}$ is give, by (5.87).

The mixed eikonal/absorptive p wescstption gives a specific model for $P(t)$ and d in terms of the pole parameters which may or may not be satisfactory.
d) (ondcnsalion. We have found the the Pomeranchon with $\alpha 0$) $=1$ generates an inflinte sequence of Regge cuts which. condense on $\alpha(0)$ at $t=0$. Similarly if we exchage some pole (${ }^{\prime}$ t) ige ther witr any number of Pomeranchons all the cuts will arrive at $\alpha_{1}(0)$ at $t=0$. These cuts will dominate over ofners due to the exchange of two or more lo wer-lyinz trajectories.

We noted in chapter 3 that the theorem on che reality of the trajectory function below threshold breaks down when Regge singularities collide, and it is possible that all crajectories are complex for $t<0$ brcause of these cuts. But although this possibility has elicited some comment in the literature [123,124] there is no evidence to support it. Regge fits with $\alpha(t)$ real seem to be satisfactory though of course there is no really crucial test.

Gribov [100,125$]$ has pointed out further difficulties whish arise from applying the diagram technique to Pomeranchor.s. When Reggeon loops are calculated divergences occur which require renormalization, but this is hard to achieve consistently for Pomeranchons. So though the diagram technique gives useful insights it can not be taken too literally.
e) Cuts and dips. An important property of the cuts is tinat their fall with increasing $|t|$ is slower than it is for he poles so that if a single pole behaves like $e^{c t}$, the exchange cut from n such pres behare like $\mathrm{e}^{(c / n) t}$. When this fact is combined with the alternating sign from muli iple P exchange (5.84) we see that though the poles dominate at $t=0$ the 2-partisle cut is likely to be strong \in nougin to cancel the pole term at some larger $|i|$. Sin:ilarly the 3 -particle cut will nterfere with these at still larger $|t|$. The amp: tudes we complex, however, and the interference will result in dips rather than seres, and ever these dips may be washedout at very large $|t|$ [116].

We have alreadr noted that there can be dipe dur to the nonsense factors ir: the Regge pole amplitudes provided there are no wrorg-signature fixed poles in the residues. But there is now the possibility of an alternative nechanism in whict the poles do not have zeros, but the amplitudes have dips due to pole-cut interference In fact it has been shown $[104,116]$ that if the enhancement factor λ (see section 4) is allowed to be ≈ 2 many of the observed dips can be explained in this way. Since the integral (5.81) is heavily weighted towards $t_{1}, t_{2}=0$ the strength of the cuts, and hence the nearness of this dip, will depend greatly on whether or not the pole terms have zeros. If in a given s-channel amplitude the pole terms have no zeros except for the kinenatical one need 3 in the forward direction ($\sim\left(\left.1-\sigma_{s} j^{\frac{1}{2}} \right\rvert\, \mu \cdot \mu\right.$ ') then the dips are found to occur systematically at $t \approx-0.2,-0.6$ and.$- .2 \mathrm{Gev}{ }^{2}$ for amplitudes with $|\mu-H|=0,1$ and 2 respectively ${ }_{i}{ }^{116]}$. The one at $t=-0.6$ is obviowly in the right vace to expiain the dip in $\pi^{\prime \prime} p \rightarrow \pi_{n}$, e.g. and we shall see in chapter 7 that the others are also just where they are needed for some proces. es.
 place, though the fact that it has to be so arge is rather wornying.

Since both the fixed poles and the cuts come from the third double spectral function, both the nonsense-zero and the pole-cut inforference explanations are equally consistent from a theoretical standpoint. He iormer requires small (or no) iixed poles and small cuts while the latter requires strong, fixed poles (so strong that not even a sizeable dip is seen in the pole term) and strong cuts. Both points of view have their protagonists - sometimes known as the Argonne [126-122] and M: higan [104, ilf] schools (respertively) - and we sha 1 ty to review some of
the experimental evidence in chapter 7. At the moment neither viewpoint seems to have overwhelming merit, and it may well be that (as so often) the truth lies some where in between, i.e. the poles have some wrong-signature zeros, and the cuts are of importance in generating some dips, and especially in fllling in unwanted dips.
f) Conspiracies, Another important aspact of a cut is that it is an essentially schannel phenomenon, that is to say it deperide on unitarity in s-channel amplitudes. This plus the absence of a factorisation requirement means that the only kinematical
factors required are those essential to angular moinentum conservation i.e.

$$
\begin{equation*}
A_{H_{s}}(s, t) \sim \xi_{\mu \mu^{\prime}\left(z_{s}\right) \sim\left(1-\pi_{s}\right)^{\frac{1}{2}}\left|\mu-\mu^{\prime}\right|} \tag{5.91}
\end{equation*}
$$

So if we take such a cut contribution and apply the crosing relation (iaverse to (2.1i)) to re-express it in terms of t-channel helicity amplitudes we shall find that the various conspiracy relations are satisfied automatically, since a cut is of mixed t-chanxiel parity in general. Cuts can thus provide a natural explanation of those cases where conspiring poles have been tried but found wanting. Thus for the problem concerniny the pion in $\gamma p-\pi^{+} n$ and $p n-n p$ mentioned in section (4.3), the $\pi-P$ cut, whic'd cor*ains parts of both even and odd parity and remains finite at $t=0$, can provide a ready solution. Since thic cuthas the mame asymptotic behar iour as the pion pole (apart from log s factors) a fit fust as good as with + conspirator can be made [116]. It is found that very large cuts, with $\lambda \approx 3.55$ are needed, however. If conspiracies between poles are regardiod as implausible this is one of the best places to try and determine the mammitude of cut effects.

5.1. Fixed cuts

So far our discussion has concentrated on moving Regge cuts, but there may also be fixed cuts, and these deserve a brief mention.

We have already noted a kinematical source for one type of fixed cut in section (2.9). It is found that square root branch points occur in each helicity amplitude at the sense-nonsense points, and so there are fixed branch cuts running along the real d axis from $\sigma_{T}-1$ to $-\sigma_{T}$ where $\sigma_{T} \max \left\{\sigma_{1}+\sigma_{g}, \sigma_{2}+\sigma_{4}\right\}$. Since the $d \dot{d}{ }^{\prime}$'s have complementary branch-points these cuts do not contribute to the asymptotic behaviour of the amplitude. They could however pernit the existence of fixed poles at nonsense points with $J<\sigma_{T}-1$. There is no evidence that they do, but most of the processes which are studied have spins which are ton low for $\sigma_{T}-2$ to he a sense-nonsense point. There has been some discussion (129) of the possibility inat if one considers high spin intermediate states, say particics $5+6$ with the $5+6$ threshold below that for $1+2 \rightarrow 1+2$, then such poles can e^{-i} st at nonsense points with $J<0_{5}+\sigma_{6}-1$. But in fact extended unitarity, which allows one to write a unitarity like equation for the discontuinity across the $1+2$ threshold branch point separately, rules this out [130].
 and Kislinger [131] in order to remove the embarasswent caused by the MacDowell symmetry for fermions, which we discussed in s sctions (3.3) and (4.3). They suggest that the scattering amplitude should have a fixed cut at $J=\alpha_{0}$, where α_{0} is the intercest of the fermion trajectory at $t=0$. It can then be arranged that the negative parity trajectory moves behind this cut on an unphysical J-plane sheet for positive \sqrt{t}, so that there are no physical particles on the trajectory.

Specifically, for the nucleon trajectory in $\pi N \rightarrow \pi N$ they write

$$
\begin{equation*}
A_{H J}^{\alpha \eta}(t)=\beta(t) \frac{\alpha^{\frac{1}{2}} \sqrt{t}+\eta\left(J \cdot \alpha_{0} i^{\frac{2}{2}}\right.}{J-\alpha_{0}-\alpha^{\prime} l^{1}}\left(J-\alpha_{0}\right)^{\frac{1}{\eta}}, \tag{5.92}
\end{equation*}
$$

where as usual $\eta= \pm$ for natural/unnatural parity. (Ref. [131] uses u for t which is more appronviate for backward scattoring.) This expression has a pose at $J=\alpha_{0}+\alpha^{\prime} l$ and a fixed square root branch point at $J=\alpha_{0}$. The constraint (4.47) is sadsided by constructior. However the pole in the $\eta=-$ amplitude moves through the cut onto an unphysical sheet as \sqrt{t} increasas through zero, so there are no poitg for positive \sqrt{t}. If (5.92) is subsituted in the Sommerfeld-Watson transform we git

$$
\begin{align*}
H_{j}^{a \eta}(s, l)=-16 \pi^{2} & \frac{2 \alpha(t)+1}{\sin \pi \alpha(t)} \beta(t) d_{\lambda \lambda^{\prime}}^{\Delta \eta}\left(\alpha(t), z_{t}\right) \\
& +\int^{\alpha_{0}} d_{J} J(2 J+1) \frac{\beta(t)}{\sin \pi\left(J+\lambda^{\prime}\right)} \hat{d}_{\lambda \lambda^{\prime}}^{\sim \eta}\left(J, z_{l}\right) \frac{\alpha^{\frac{1}{2}} \sqrt{t}+\eta\left(\alpha_{0}-J\right)^{\frac{1}{2}}}{\left(J-\alpha_{0}-\alpha^{\prime} t\right)\left(\alpha_{0}-J_{0}\right)^{\frac{1}{2}}} \tag{5.93}
\end{align*}
$$

where the contuur of integration is round the cut branch point, and $\alpha(t)=\alpha_{0}+\alpha^{\prime} t$. This sort of expression has been used to fit backward $\pi \mathrm{N}$ scattering with the N_{α} and Δ_{8} poles [132]. The results are reasonably satisfactory in that some spurious wide angle dips produced by the exchange poles alone (see chapter 7) are removed, but an unreasonably large nucleon residue is needed because the cut discontinu'ty is too large near $t=0$. This is not really surprising because the infinite type singularity $\left(J-\alpha_{0}\right)^{-\frac{1}{2}}$ is in conflict with partial-wave unitarity, but giving the cut a nonsingular discontinuity ruins the fit.

CHAPTER 6

DUALITY

6.1. High and low energies

In chapter 2 we showed that the Sommerfeld-Watson transform provides an exact representation of the scattering amplitude for all s and t in terms of i-channel J-plane singularities. The main use which we have made of it, however, is in high energy approximations when only the leading polas and cuts are needed if we wish to go to lower energies we must expect more terins to become relevant.

At low energies it is ofter more convenient tc represent the scattering amplithide by its partial waves in the direct- (s^{-}) chaniel, i.e.

$$
\begin{equation*}
A_{H_{S}}(s, t)=16 \pi \sum_{J_{s}=M}^{\infty}\left(2 J_{S}, 1\right) A_{H J_{S}}(s) d_{\lambda \lambda^{\prime}}^{J_{S}}\left(z_{s}\right) \tag{6.1}
\end{equation*}
$$

The advantage ics in the fact that at low entrgies ondy a few partial waves will be non-zero, and it is often quite a reasonabie approximation to represent each partial wave as a sum of yesonance poles

$$
\begin{equation*}
A_{H J_{s}}(-)=\sum_{r} \frac{s_{r}(s)}{s_{r}-s} \tag{6.2}
\end{equation*}
$$

where s_{r} is the (complex) resomance poattion. The partial-wave series only converges in a region round the s-channel physical region (the Lehman allipse) of course.

Since both (6.1) and (2.54) are exact representations of the amplitude it is natural to wish to try and understand the relationship between - pproximations like (0.2) and the Regge reprisentation. This is particularly important in the intermediate energy region ($\sim 1.5-3 \mathrm{GeV}$) where the known reacnances seem to be dying out but the amplitude hat not yot settled down to 14 smooth asymptotic behaviour.

The first poins, to note is that t-channel regge poles and cuts do not contain poles in s. This means that a fuite number of them can never give rise to anschamel resonance, so either an infinte number fis needed or the resnnances are in \therefore... background migegral. On the other hand thr "conance poles lie on unphysical sheets (except for bound states) and one does not know how to continue the Regge pole terms (defined on the physical sheet) to the resonance position. The Regge poles and cuts do not individually coutain the s-channel threshold behaviour either, so again, since the representation (2.54) must contain this bubaviour, there must either be n : infinite number of them, or it must stem from the background integral, however far back one may push the integration contour.

Where an s-channel pole will appear in the t-channel J-plane depends on the behaviour of its residue $g(s)$. If g is real and constant as $s \rightarrow \infty$ then the $1 / s$ behaviour of (6.2) will give rise to a fired J-plane pole at $J=-1$. On the othcr hand if $g(s)$ decreases exponentyilly with s the resonance will never appeax in the J-plane however far back we pus: the integration contour, but will always ise part of the hackground integral. If there are many poles there may be a mutual carcellation

Fig. 34. The differential cross section for backward $\mathbb{F} p \rightarrow$ Fp ectitering, siuwing line interfereme pattern and its interpretation in refs. $\left.{ }^{5} 57_{4} 58\right]$ in tems of yesonsunces interferme with a smooth Regre exchange background.
between thein so that even with constant $g^{\prime} s$ the asymptotic oehaviour is iaster than $1 / s$, bu if the s-channel poles are ever to give $i=0$ t' the asymptotic behaviour of at-chanel Regge pole an ininite number will ie needed.
ii is thus not possible to give a simple a priori answer ne question of how to cope with the intermediace energy range, because we do not know how to contmue the ferwe pole and cut terms down to low energies, or the resonance pole terms to higher energles. The answer depends on the dynamics of the particular amplitude.

One suggestion is that one can simply add the leading trajectories and the resonance poles $[57,58]$, so that

$$
\begin{equation*}
A_{H}(s, t)=A_{H}^{\operatorname{Regge}}(s, t)+A_{H}^{\operatorname{Res}}(s, t), \tag{6.3}
\end{equation*}
$$

 $t=0$; from ret. [1.3]
i.e. the Regge poles give a smooth background to the reaonances, and the resonances are part of the background integral below the leading poles. The Regge and resonance amplitudes are both complex of coursc, and the resultiny interference pittern, a bumpy resonance atructure superimposed on the Regge azymptutic eve haviour, was used by Larger and Cline $[57,58]$ to Identity reaonances, for example by loo:3ng at backward $\pi \mathrm{N}$ data (see fig. 34).

Yo wever this 'interference inodel' was criticised in a now classic paper by Dolei, Horn and Schmid [133] on the grounds that the resonances may already be included in the Regge terms, at least to some extent, so that double counting may cccur. In particular they found that in $\pi^{-p} p-\pi^{0} n$ if they added the known resonances to the ρ trajectory obtained from a high energy tit the result was much larger than the amplitude (fig. 35).

This in itself is not conclusive, however. Firstly it is not difíicult to think of different parameterizations of the Regge pole terms, such as $\left[\left(s-s_{t}\right) / s_{0}\right]^{\alpha(t)}$ instead of $\left(s / s_{0}\right)^{\alpha}(t)$ for example, which greatly reduce the magnitude of the Bagge term at low energy (near the arbitrary point s_{t}) without altering the asymptotic behaviour. The branch point at $s=s_{t}$ would be spurious of course, but then so is the one at $s=0$ in the usual Regge term - it comes from the approximation (4.25) and is inconsistent with the analyticity of the amplitude.

Secondly the size of the resonance contribution is ambiguous. The usual mathod of identifying a resonance in partial-wave anaiysis is to make an Argand diagram plot of the phage of the amplitude varying with energy. An inelastic Breit-Wigner term of the form

$$
\begin{equation*}
A_{J}(s)=\frac{\Gamma x r s_{r}}{s_{r}-s-i \Gamma r s_{r}}, \tag{6.4}
\end{equation*}
$$

(where Γ is the wirth and x the elasticiiy) would produce an anticlockwise loop in this Argand diagram, as in fig .36 . and so the resonance paraneters may be established by trying to fit the loop with such a Ireit-Wigner formula [134]. The parameters are chosen so as to saturate the amyiltude at the resonance point, but the contribution of an inelastic resonance can se made much smaller by giving its residue a phase $\mathrm{e}^{\mathrm{l} \phi}$. (Reality of the residues is required only for eiastic resonances without background [135].) Low energy, falily elastic, resonances anally produce bumps in the amplitude, and their identification is not in doubt, but in lin

Fig. 36. Showing the behaviour of the partial-wave Argand if gram when an inelastre $130-$ nance occurs. For a range of energies near the resonance fergy Σ_{R} the curve follows the circle sue to the Breit-Whner ierm, bat this sircle is smaller than the untarify circic because c ? the inelasticity, and it is F . shed over to one side, and the phase at resonance is rotated from $\frac{1}{2} \pi$ by the background.
intermedtate energy region there can be little certainy about their existence and strength. In fact, as we shall discussi below, periectly good fits to the data can be made using the interference model (0.3), with phases for the resorance residues [196].

Despite this there have been several theoretical developments which have led many people to belleve that the double-counting of the interference models is seri. ous, and it is these developments which form the subject of this chapter. But first we must introduce another tool which has been much used in recent Regge phenorenology, finite energy sum rules.

6.2. Finite energy sum mules

Finite energy sum rules (FESR) are akin to the SCR of section 2 , but they differ in that they are not restricted to cases where the amplitude is convergent at infinity [133]. It is only necessary that the amplitude should nave a known asymptotic behaviour. Most of the applications have been restricted to situations where only Regge poles are expected to be important in the high-energy behaviour, and we shall make this simplification in our presentation. The inciusion of cuts is mentoned in the finnl section.

A scattering amplitude is expected to obey a fixed l dispersion relation (2.26)

$$
\begin{equation*}
\hat{A}_{H_{t}}(s, t)=\frac{1}{\pi} \int_{0}^{\infty} \frac{D_{s}\left(s^{\prime}, t\right)}{s^{\prime}-s} \mathrm{~d} \cdot+\frac{1}{\pi} \int_{u_{0}}^{\infty} \frac{D_{u^{\prime}}\left(u^{\prime}, t\right)}{u^{\prime}-u} \mathrm{~d} u^{\prime} \tag{6.5}
\end{equation*}
$$

Since we are supposing that there are ony Regge poies we can write

$$
\begin{equation*}
\left.\hat{A}_{H_{i}}(s, t)-\sum_{s \rightarrow \infty}-G_{i}(t) \frac{\mathrm{e}^{-i \pi\left(\alpha_{i}-v\right)}+v_{i}}{2 \sin \pi\left(\alpha_{i}-v\right)}, v_{0}\right)^{\alpha_{i}(i)-h} \tag{5.5}
\end{equation*}
$$

where we have deficod

$$
\begin{equation*}
v \equiv(s-u) / 2 \tag{6.7}
\end{equation*}
$$

and the i esidue $G_{i}(t)$ may be found by comparing with (4.74). We will suppose that the sum (0.6) includes all the poles with Re $\alpha(t)>-k$ (say). From (6.6)

$$
\begin{equation*}
D_{s}(s, t) \underset{s \cdots \infty}{ } \sum_{i} G_{i}(i)\left(w_{i} s_{0} \alpha_{i}(t)-M\right. \tag{6.8}
\end{equation*}
$$

and

$$
\begin{equation*}
D_{i z}(s, t) \underset{s \rightarrow \infty}{ } \sum_{i}-a_{i} G_{i}(i)\left(w / s_{0}\right)^{\alpha_{i}(i)-M}(-1)^{M-v} \tag{8.9}
\end{equation*}
$$

Hance we may wr te

$$
\begin{align*}
& \dot{A}_{H_{i}}(s, t)-A_{H_{i}}^{\operatorname{REGge}}(s, t)=\frac{1}{\pi}{\underset{i}{t}}_{\infty}^{D_{\mathrm{s}}\left(\nu^{\prime}, t\right)-\sum_{i} G_{i}(i)\left(v^{\prime} / s_{i}\right)^{\alpha_{i}(t)-M}} v^{\prime}-v \quad \cdots \mathrm{~d} v \\
& +\frac{1}{\pi} \int_{v_{t}}^{\infty} \frac{D_{u^{\prime}}\left(v^{\prime}, t\right)-(-1)^{M-v} \sum_{i} o_{i} C_{i}(i)\left(i / s_{0}\right)^{\alpha_{i}}()^{i, v^{5}}}{v^{\prime}+\nu} d v^{\prime}, \tag{6.10}
\end{align*}
$$

Where: is the thres hold expressed in terms of v, an a the integrals will cinverce

As $s \rightarrow \infty$

$$
\begin{equation*}
A_{H}(s, t)-A_{H_{t}}^{\text {Regge }}(s, t) \sim 1 / v^{k} \tag{6,11}
\end{equation*}
$$

since all the higher contributions to the asymptotic behaviour of the amplitude are included in ARegge. So taking the limit of (6,10) as $y \rightarrow \infty$ we conclute t^{\prime} at the com efficient of $(\nu)^{-1}$ on the right-harsi side of (6.10) must vanish, l.e.

$$
\begin{equation*}
\int_{\nu_{t}}^{\infty}\left\{D_{s}\left(\nu^{\prime}, t\right)-D_{u}\left(\nu^{\prime}, t\right)-\sum_{i}\left[1-c_{i}(-1)^{M-t}\right] G_{i}(t)\left(\nu^{\prime} / s_{0}\right)^{\alpha_{i}(t)-M}\right\} \mathrm{d}^{\prime}=0 \tag{6.12}
\end{equation*}
$$

Now since the Regge poles contain the asymptotic behaviour of $D_{s}(v, t)$ the integrand will vanish for $\nu>N$ say, if N is chosen to be sufficiently large, so we can write

$$
\begin{equation*}
\left.\int_{v_{\mathrm{t}}}^{\mathrm{V}} v^{i} s\left(v^{\prime}, t\right)-D_{u}\left(v^{\prime}, t\right)\right\} \mathrm{d} \nu^{*}=\sum_{j}^{2 s_{\mathrm{o}} G_{j}(t)\left(N / s_{o}\right)^{\sigma_{j}(t)-M+1}} \frac{\alpha_{j}(t)-M+1}{} \tag{0.13}
\end{equation*}
$$

where we hava per formed the integral over the Regge pole (and taken ite contribution from the lower limit of integration ${ }^{\prime} t$ to negligible relative to that from the upper limit N. It must be noted that cniv poles with signature of $=(-1)^{M-v+1}$ contribute to (6.13).

This expression gives us a relation between the imaginary part of the scatterin; amplitudes at low energies ($\langle i n$), and the Regge pole terms which fit the high energy mplitude ($>N$). It depends only on the analytic properties of the amplitude and the asymptotic behaviour, and is exact to the extent that Regge pole dominance is valid.

We can generalize (6.13) by writing a dispersion relation for

$$
\begin{equation*}
\left[A_{H_{t}}(s, t)-A_{H_{t}}^{\mathrm{Regge}^{2}}(s, t)\right]\left(\frac{v}{s_{\mathrm{o}}}\right)^{2 n} \tag{6.14}
\end{equation*}
$$

instead of (6.10). As long as $2 n<k$ the coeficient of the $1 / v$ term must vanish and so we have

$$
\begin{equation*}
\int_{\nu_{\mathrm{t}}}^{N}\left\{D_{s}\left(v^{\prime}, t\right)-v_{u}\left(\nu^{\prime}, t\right)\right\}\left(\nu_{\mathrm{n}}^{*}\right)^{2 n} \mathrm{~d} v^{\prime}=\frac{\Sigma}{j} \frac{2 s_{0} G_{j}(t)\left(N / s_{0}\right)^{\alpha_{j}(t)-4+2 n+1}}{\alpha_{j}(t)-M+2 n+1} \tag{6,15}
\end{equation*}
$$

If an odd power of $\left(1 / s_{0}\right)$ - re used in (6.i4) only the poles with $s_{k}=(-1)^{H-v}$ would contribute giving

$$
\begin{equation*}
\int_{\nu_{\mathrm{t}}}^{N}\left\{D_{s}\left(v^{\prime}, t\right)+D_{u}\left(v^{\prime}, t\right)\right\}\left(\frac{v^{\prime}}{s_{\mathrm{o}}}\right)^{2 n-1} \mathrm{~d} \dot{\prime}^{\prime}=\sum_{k} \frac{2 s_{0} G_{k}(t)\left(N^{\prime} s_{o} \sigma_{k}(t)-M+2 n\right.}{\alpha_{k}(t)-M+2 n} \tag{6.16}
\end{equation*}
$$

An uiternative, and perhaps more elegant, way of deriving these results is to ase

$$
\begin{equation*}
\int_{\mathrm{c}} \bar{A}_{H_{t}}\left(v^{\prime}, t\right) \mathrm{d} v^{\prime}=0 \tag{0.17}
\end{equation*}
$$

where c is a contour round the threshold branchpointe as shown in fig. 37. Hence we have

$$
\begin{equation*}
2 \mathrm{i} \int_{\nu^{\prime} \mathrm{t}}^{N}\left\{D_{s^{\prime}}\left(\nu^{\prime}, t\right)-D_{u^{\prime}}\left(\nu^{\prime}, t\right)\right\} \mathrm{d}^{\prime}{ }^{\prime}=-\int_{\mathbf{c}^{\prime}} \hat{A}_{H_{t}}\left(\nu^{\prime}, t\right) \mathrm{d} \nu^{\prime}, \tag{6.18}
\end{equation*}
$$

where c^{\prime} is the circle at $|p|=N$. If we thon replace the amplitude at $|v|=N$ by (6.8) and perform the integration round the circle by purting $:=N e^{i \phi}$, and take suitable care of the discontinuity of the Regge term at the branch cuts, we obtain the same result as (6.13).

Fig. 37. The contour of integration in the complex ν plane used in (6.17).
These sum rules involve only the imagdnary part of the low energy amplitude. It is possible to include arbitrary mixtures of the real and imaginary parts by writing a dispersion relation for [137]

$$
A_{H_{l}}(\nu, t)\left(\frac{\nu_{1}^{2}-\nu^{2}}{s_{0}^{2}}\right)^{\beta, 2}
$$

where is a continuously "ariabl farameter. We then get instead of (6.13)

$$
\begin{array}{r}
\int_{t}^{N}\left\{\cos (\pi \beta / 2) \operatorname{Im} \hat{A}_{r_{i}}\left(v^{\prime}, t\right)-\sin (\beta, 2) \operatorname{Re} \hat{A}_{H_{i}}\left(v^{\prime}, t\right)\right]\binom{\nu^{2}-v_{f}^{2}}{s_{0}^{2}}^{\beta / 2} \mathrm{~d} \nu \\
=\sum_{j} \frac{2 s_{0} G_{j}(t)\left(N / s_{0}\right)^{\alpha}(t)+\beta+1}{\alpha_{j}(t)+\beta+1} \frac{\cos \frac{1}{2} \pi\left[\alpha_{j}(t)+\beta\right]}{\cos \frac{1}{2} \pi \alpha_{j}(l)} \tag{6.20}
\end{array}
$$

again neglectirg terms of order ν_{t} / \mathcal{N}. However only in a few cases is the real part of an amplitude known directly (e.g. from Coulomb interference), and usually the real parts are determined from dispersion relations, in which case they do not of courso give independent information about the high-energy behavicur.

These sum rules have had a wide variety of applications [138]. For example $[138]$ |f we conaider the amplitude for $\pi p=\pi_{n} 0_{n}$, where the negative signature p Regge pole is expected to be the dominant contrihution, we fird (using the us ual A. and F notation for the amplitudes - see e.g. ref. [12] for the relation of the: : : 0 belici'y amplicudes), seltiag $s_{0}=1$

$$
\begin{equation*}
\int_{v_{t}}^{N} \operatorname{Im} A^{\prime(-)}\left(v^{\prime}, t\right) \mathrm{d} v^{\prime}=\sigma_{1}(t) \frac{N^{\alpha(t)+1}}{a(t)+1}, \quad \int_{v_{\mathrm{t}}}^{N} v^{\prime} \operatorname{Im} B^{(-)}\left(v^{\prime}, i\right) \mathrm{d} v^{\prime}=G_{B^{(t)}}^{N^{\alpha(i)+1}} \alpha(t)+1 \tag{6.21}
\end{equation*}
$$

whe:e the $G_{i}(t)$ are the independent resitues in the A^{j} and B amplitudes, and the $(-)$ sign indicates that the anti-symmetric isospin combinations have been taken (sea e.g. ref. [12]). These re atinus have been used to find the ρ trajectory and residue functions, by insertirs the phase shift results for the low energy amplitudes. Since phase-shift araly ses have only been carried out at 2ow energies it is unavoldable that N showid be taken rather low $\approx 1-1.6 \mathrm{Gev}^{2}$. This is rather too. low for one to have conftence that the asymptotic behaviour has been reached, None-the-less the resulting Regge parameters are in fair'y good agrsement with those found in high energy fits.

Since there are two Regge parameters $\alpha(t)$ and $G_{i}(t)$ in each of the relations (6.21) they do not have a unique solution. But it is possible to deduce $\alpha(t)$ from the ratios of different moment sum rules directly. Thus if we define [133]

$$
\begin{equation*}
S_{n}(t)=\frac{1}{N^{n+1}} \int^{N} \nu^{n} \operatorname{Im} A^{i(-)}(\nu, t) \mathrm{d} v=\frac{G_{A}(t) N^{\alpha(t)}}{\alpha(t)+n+1} \tag{6.22}
\end{equation*}
$$

then we have

$$
\begin{equation*}
\frac{S_{n}(t)}{S_{m}(t)}=\frac{\alpha(t)+m+1}{\alpha(t)+n+1} \tag{6.23}
\end{equation*}
$$

So $\alpha(t)$ can be deduced by taking the first two n n-vanishing moments, and then inserted in (6.21) to give the $G_{i}(t)$. The trajectories obtained agree well with those of high energy fits, the residues rather less well. The various resonance cortributions to the low energy integrals have different t dependences due to their different splisj in tuet they oscillate like $d_{\lambda \lambda^{+}}^{\sigma}\left(z_{S}\right)$. The result is that the integrals have zeros at various t-values. It is found that $G_{A}(t)$ changes sign at $t \approx-0.15 \mathrm{GeV}$ and $G_{B}(t)$ at $t \approx-0.6 \mathrm{GeV}$. This latter point is of course just where we expect a nonsense zero in the ρ residue at $\sigma_{\rho}(t)=0$. The former we shall identify in chapter 7 as the 'cross-over' zero of $\pi \mathbb{N}$ scattering.

In principle the f esence of secondary trajectories can also be determined by these sum rules. Thus if there is a second ury ${ }^{\prime}$ 'trajectory below the ρ with a trajectory function $\alpha_{1}(t)$ we can deduce

$$
\begin{equation*}
\frac{S_{1}(t)-G_{A}(t) N^{\alpha(t)}}{S_{3}(t)-\frac{\alpha(t)+1}{\alpha(t)+3} G_{A^{\prime}}(t) N^{\alpha(t)}}=\frac{\alpha_{1}(t)+3}{\alpha_{1}(t)+1} \tag{6.24}
\end{equation*}
$$

In re: $\left.{ }^{{ }^{1}}{ }^{133}\right]$ it is fou ad that $\alpha_{1}(t) \approx 0.3+0.8 t$ which is much hicher than one would expect, and it can not really be taken very seriously because of the large errors.

The higher moment sum rules weight the integral more towards the upper limit of integration where the amplitudes are less well known. In fact if one takes N large enrugh the sum rule becomes just the same as a Regge fit at N. The sum rule can
 taken large enough, but if N is really in the asymptotic region a high energy fit is r eally just as good. In either case becruse of the limited accuracy of the data the results obtained will depend very much on the assumptions which are made as to the number of input trajectories etc. With data of finite accuracy there is no possibility of a unique analytic extrapolation.

There is, however, one crucial advantage of the FESR method over conventional fits, namely that the input amplitudes (e.g. the A^{+}and $B \pi N$ amplitudes above) are already decomposed into their spin componente whereas, the high-an-
ergy i 'd data only enables us to find $\left|A^{\prime}\right|^{2}$ and $|B|^{2}$, and the signs of the amplitudre can not be determined. In fact in the old fits of $\pi \mathrm{N}$ scattering the sign of $E^{(+)}$ was opposite to the value subsequently obtained from FESR. The FESR sign has recently been confirmed by measuring spin-rotation parameters [139].

Another interesting asrect of FESR is the possibili y they offer of finding fixed poles at wrong-signature joints. These do not contribute to the asymptotic behayiour, of course, and so can not be obtained directly in fits. But if we take amplifudes of definite signature (2.39), which have the dispersion relations

$$
\begin{equation*}
A_{H_{t}}^{\prime}(s, t)=\frac{1}{\pi} \int_{s_{0}}^{\infty} \frac{D_{H s^{\prime}}\left(s^{\prime}, t\right)}{s^{\prime}-s} \mathrm{~d} s^{\top}+(-1)^{M-v} \quad \int_{u_{0}}^{\infty} \frac{D_{H u^{\prime}}\left(s^{\top}, t\right)}{s^{+}-s} \mathrm{~d} s^{\prime} \tag{6.25}
\end{equation*}
$$

and follow the procedure (6.5) to (6.16) we find

$$
\begin{equation*}
\int_{v_{\mathrm{t}}}^{N}\left[D_{I s^{\prime}}\left(v^{\prime}, t\right)+\alpha(-1)^{M-v} D_{I I u}\left(v^{\prime}, t\right)\right]\left(v^{*} / \mathrm{s}_{\mathrm{o}}\right)^{n} \mathrm{~d} v^{,} \quad \sum_{i} \frac{2 s_{0} G_{i}(t)\left(N / s_{\mathrm{o}}\right)^{\alpha_{i}(t)-M+i+1}}{\alpha_{i}(t)-M+n+1} \tag{6.26}
\end{equation*}
$$

These cuincide with (6.15) or (6.16) only for alternate moments. The mistake in (6.26) is that we have neglected the fixed poles in the signatured amplitude at wrong-signature nonsense points. If there were no fixed poles (6.26) would hold, and to the extent that they are small it may still be approximately valid, but otherwise we need to add them to the right-hand side of (6.36). Thus if we consitter the negative signature ρ contribution al the spin-flip amplitude B with $M=1$, and for which $J=0$ is az wrong signature point, it is found [123] that for the zeroth moment

$$
\begin{equation*}
\int_{\nu_{t}}^{N} \operatorname{Im} B^{(-)}\left(\nu^{\prime}, t\right) d \nu^{\prime}=G_{B}(t) \frac{N^{\alpha(i)}}{\alpha(i)}+g(t) \tag{6.27}
\end{equation*}
$$

where $g(t)$ is ' most independent of t. This constant is due to the dominance of the s-channel mucleon born term on the left-k nd side of (6.27), whose $1 / 1$ thil gives rise to the fixed power behaviour. It may be interpreted as a fixed po? at $J=0$.

However, our main interest in FESP in this chapter is that they ler Dolen, Horn and Schmid [133] to the conclusion that the interierence model commits double counting. The point is that essentially the whole $\mathrm{din}^{\operatorname{Im}} A^{\prime}$ and $\operatorname{Im} B$ at low energies is given oy the s-channel poles. Hence we have approximately

In other words the average of the direct channel poles is equal to the Regee pole term. This gives one definition of duality - so called 'zverage duclity' - the resonance poles are dual to the Regge poles in this averace sense. The authors of ré [133] suggested hinat instead of the interference rodel fo. 3) a botter reppesentation of the amplitude would be given by

$$
\begin{equation*}
A_{H}(s, t) \approx A_{H}^{\operatorname{Regge}_{(s, t)}}+A_{H}^{R e s}(s, i) \cdots A^{R e s}(s, t) \tag{6.28}
\end{equation*}
$$

The inal term represents tie average of the resoname terms. Whether or not this is very different from the interference model depends whether the resonarces tend to add, as they appear io do in $B^{(-)}$and $A^{(+)}$, or cancel as they do in $A^{\prime(-)}$ and $B^{(+)}$

However, as we leve already mentioned, the work of ref. [186] indicates that since we do not kuov'a priorl the phase of an inelastic resonance contribution it is possible to make either prescription work in any amplitude. But if (6.28) is accepted it leads to a new sort of bootstrap-like principle in which the direct channel resonances determine the cross-chanvel Regge poles. It is very different of course from the conventional form of bootstrap in which unitarity is used to generate the resonances frcm the crossed-channel potential, and in particular, as we shali see in section 5 , the solutions of the FWSR conditions are in no way unique. Because of this we would prefer to use the term 'FESR consistency condition' to describe this duality idea, and preserve the word 'bootstrap' with its former mesting.

It should be noted that the resonances dominate the imaginary part of the amplitude but not the real part (the real part of a Sreit-Wigner formula vanishes at the resonance position). A common approximation is to represent the imaginary part as a sum of delta-functions at the resonance positions

$$
\begin{equation*}
D_{s}(s, t)=\sum_{r} R(s, t) \delta\left(s-s_{r}\right) . \tag{6.30}
\end{equation*}
$$

The reason why the FESR gives such a strong constraint is evident from this approximation. For substituted in the dispersion relation (6.5) the form (6.30) gives

$$
\begin{equation*}
A(s, t)=\sum_{r} \frac{R\left(s_{r}, t\right)}{s-s_{r}} \underset{s \rightarrow \infty}{\sim} \frac{1}{s}, \tag{6.31}
\end{equation*}
$$

but we have assumed that $A-A$ Regge $<\mathrm{O}(1 / s)$ so the resonances must be contained in the Regge term.

6.3. Schmid loops

The form of a Regge pole amplitude presents us with a further possible source of ambiguity in identifying inelastic resonances. We have mentioned that the method used in phase-shift analysis is to look for anti-clockwise loops in the par-tial-wave Argand diagram, but it was shown by Schmid [140] that the crossec:channel Regge pole term may also give rise to such loops because of the phase variation given by the signature factor.

For example in a spinless scattering amplitude with the exchange of a single Regge trajectory $\alpha(t)=\alpha(0)+\alpha^{\prime} t$, and equal mass kinematics,

$$
\begin{equation*}
z_{s}=1+\frac{t}{2 q_{s}^{2}} ; \quad q_{s}^{2}=\frac{s-4 m^{2}}{4} \tag{6.32}
\end{equation*}
$$

the phase of the s-channel partial wave projection depends on [141]
where $j_{J}(x)$ is the spherical Bessel function. Thus as the energy (or q_{S}^{2}) increases tie phase of the partial-wave amplitude rotates anti-clockwise. And if we identify the point s_{r}, where the phase reaches $\pi / 2$, as a 'resonance' pos tion, then ther ${ }^{3}$ will be another 'resonance' at

$$
\begin{equation*}
s_{r}^{\prime} \equiv s_{r}+1 / \alpha^{\prime} \text { etc. } \tag{6.34}
\end{equation*}
$$

and every partial wave resonates at these same values of s. So the form of the partial waves is similar to that for a set of trajectories. The par ent trajectury is linear with slope α^{\prime}, with a sequence of daughter trajectories such that in each partial wave the resonances are spaced by $1 / \alpha^{\prime}$. (There are also trajectories above the parent which we discuss later.) The t dependence of all the other factors ir the Regge pole term will obviously alter the shapes and sizes of the loops, but the phase variation must retain the pattern indicated above as long as $\alpha(t)$ and (t) are real. The reason for this structure is of course that the oscillating phase of the Regge term matches the oscillations in z_{s} of the Legendre polynomials representing the spins of the 'resonances'. Since $P_{l}\left(z_{S}\right) \rightarrow 1$ as $z_{s} \rightarrow 1$ all the 'resonances' add in the forward direction corresponding to the peripheral forward peak of the Regge term.

How should these loops be interpreted?. We know that the Regge pole term is a smooth function of s and does not contain any poles, but on the other hand we orly know the form of the Fegge term on the physical sheet and the resonance poits are on unphysical sheets. Remembering the average duality suggested by FESR analyses it seemed natural to Schmid [140] to identify the loops with a set of overlapping resonances. The difference is that now the duality is local - the matching of the resonances with the Regge pole holds at each s point without any need of averaging. The sum of the poles gives rise to a smooth Regge behaviour because as one partial wave reaches its maximum a^{*} a resonance others are at minima. The fact that the resonance has bern projected from a smooth function guarantees this cooperation between the partial waves. Olviously su:h a cooperation is a goori deal less than perfect in the actual raysical arıplitudes at low enersies because we see bumps, but it may be supposed chat the smooth high encroy behnvour represents the onset of local duality.

This would mean that at any energy one could use e her the $s \cdots$ tannel resonance prescripison (6.2) or the t-channel Regge pole description (2.54). At low en(rgies, where he resonance poles are well separated, the s-cha mel des cription is to be preferred since a large number of Regge poles are needed io produce the bumps; while at high energies the s-channel prescripion becomes complicated, requiring many overlapping resonances, but the t-channel prescription requires only a few Regge poles.

The failure of the s-channel partial-wave series outside the Lebman elipse should make one cautious about pressing the equality of the two descriptions so far, however. An equally good interpretation [142] of what is happening wol 's seem to be that the Argand loops at high energies do not correspond to reso nances at all but are simply the resust of the phase variation caused by the crossed- harnel Regge poles. For example it is certainly the case that if one takes a high energy fit to say πN scattering, and continues it down to lower energies;, and makes a partial-wave projection, the Argand loops obtained are very sim lar to those found inlow energy partial-wave analyses [142, 143]. This obviously must be so to the extent that the continued Regge poles give a reasorable fit to the low energy data. The !nops are more complicated than in the discussion above because the phrse of the -uplitude at any point is the sum of the phases of several dif:eron Regge poles. And of course if one chooses not to interpret the loops is resonances; the whole case for duality crumbles, and the interference model may be re-instated.

The only way of distinguishing these two hypotheses is to try and find some criterion for the existence of inelastic resonances apart from Argand loops. When a resonance produces a strong bump in some amplitude its existence is very plausible because a small number of Regge terms can not produce such a bump, but at higher ^nergies where the amplitudes are smooth there does not seem to be any simp' criterion that can be applied. A resonance pole exists on an unphysical sheet, and there is no unique way of analytically continuing the experimental data from the real axis.

In order to make such a continuation one requires a dynamical model. The Breit-Wigner formula is one such model but it is by no means unique, and in fact ought not to be applied in situations where the resonance may have a large background [135]. If we had an adequate dynamical model for inelastic resonances (based for example on many channel N / D equations) one could try to confirm the presence of such resonances properly, but as we are still very far from having satisfantory models only the low mass resonances can be regarded as well established ai present.

There is one other important property of a resonance pole, that it should appear in all communicating channels, which at first sight might seem to offer hope of distinguishing true resonances from Regge pole effects. Put in arother way, since the Regge poles must factorize in the t-channel, and the resonances must factorize in the s-channel, if Regge generated loops are to be interpreted as resonances they must factorize in both s and t, which is hardly possible. This is only true ior single trajectory exchanges, however, and we shall find in the next section that very often either there are cancellations between different trajectories, or a closely related set of poles can be exchanged in the various communicating channels such that similar circles are produced in each. This only confounds the problem of the existence of high mass resonances, but it also means that if one belteves in dual models one must place various restrictions on the trajectories which can be exchanged which have very interesting consequences for Regge phenomenology.

6.4. Dual models [144]

The first thing to note about the suggested equivaler ie of crossed-channel Regge poles and resonances it that it can not be made to work for the Pomeranchon (P). For example, as far as we know $\mathrm{K}^{+} \mathrm{p}$ scattering does not give rise to any resonances. If there were such doubly charged strange baryons they would not fit into any of the $\operatorname{SU}(3)$ mult plets discussed ir chapter 3, and could not be made up from three quarks as the other baryons can. For this reason $K^{+} p$ is known as an ' ${ }^{\prime}$ xotic' channel. But, of course, like other elastic scattering processes $K^{+} p \rightarrow K^{\prime} p$ is expected to be controlled at high energy by the exchange of the \mathbf{P} trajectory. We shall see η chapter 7 that there have been many successful fits of this kind. Since there is no other trajectory known which is high enough to cancel the P we would expect to find Schmid loops in K^{+}p scattering, but these would not correspond to resonances.

The most popuiar way out of this dilemma $[145,146]$ is to suppose, not implausibly, that the \mathbf{P} is quite unlike other Regge singularities. We have already noted, in chapter 5 , the condensation of cuts which results from multiple \mathbf{P} exchange, and it may well be that the singularity which has been represented by the P pole in Regge fits is really a complicated superposition of cuts. Alternatively it can be ar gued that the P may have a very small slope, so that its phase oscinlations arc
slow, and will only produce loops at high energies if at all. In fact at one time an almost zero slope for the P seemed to be favoured in Regge fits, and the more recent Serpukhov data seem to favour $\alpha_{\mathrm{p}}^{\prime} \approx 0.5 \mathrm{which}$ is only about half that of other trajeciories. Thus the P may not give rise to 'oops (cr perhaps to very weakly coupled, sometimes exotic, ones), and its main function may be to give a predominantly imaginary background to the resonances produced by all the othe exchauged trajectories. In $K^{+} p$ these other exchanges are ρ, ω, f and A_{2}, but we have already found that these have roughly degenerate trajectories, anc if me suppos. that this degeneracy holds for the residues too, these contributions to the imaginary part of the amplitude will cancel (see (4.92)) leaving only the P. This suggestion is born out by the flatness of the $K^{+} p$ total cross section (see section 7.6) which can be fitted by the P alone. In fact quite generally the total cross sections for those processes which do contain resorances, such as $\pi^{ \pm} p, K^{-} p, K^{-} n, \bar{p} p$ and $\bar{p} n$, are decreasing at high energies so the lower trajectories must contribute, while in processes with no known resonances, like $\mathrm{K}^{+} \mathrm{p}, \mathrm{K}^{+} \mathrm{n}, \mathrm{pp}$ and pn , the cross sections are moremor-less constant above abou. 2 GeV (below which threshold effects may be important). One also finds that exotic processes have smooth differential cross sections, while those with resonances exhibit dips in $\mathrm{d} \sigma / \mathrm{d} t$ characteristic of Regge pole exchanges.

These facts suggest that, if one first subtracts the Pomeranchon from all the amplitudes to which it can contribute, it may be possible to fit the remaining anplitudes with just the lower lying trajectories, and that these trajectories will be dual to non-exotic resonances only. One is thus postulating a solution to the FESR consistency condition which contains only poles (direct channel resonances = crossed channel Regge poles).

To see how such a model fits together we start with $\pi \pi$ scattering. When the P has been removed we are left with only the ρ and from among the dominant trajectories. The $l=2 \pi^{+} \pi^{+}$and $\pi^{-} \pi^{-}$states are exotic, and if they are to contain no resonances we require that the ρ and f exchanges should be exchange degenerate and cancel ench other, i.e. $\alpha_{p}(t)=\alpha_{f}(t)$ and $\beta_{p \pi \pi}=\beta_{\mathrm{f} \pi \pi}$. Then in $\pi^{+\pi}$ scatlenng the sign of the ρ contribution is opposite (due to charg conju ation) and the required resonances do occur in the $I=0$ and $I=1$ channels. Tien in $\mathbb{K} \overline{\mathbb{K}}$ scattering we can exr hange the $I=0 \mathrm{f}$ and ω, and the $I=1 \rho$ and A_{2}. The wbsence of resonances ir. the exotic $K^{+} K^{-}$and $K^{+} K^{\rho}$ chamels requires $\alpha_{\mathrm{f}}=\alpha_{\omega}, \alpha_{\rho}=\alpha_{A 2}$, $j_{i / K K}$ $\beta_{\omega K K}$ a'd $\beta_{\rho K K}=\beta_{A_{2} K K}$. And in πK scattering, where we have the exchange degenerace $\mathbf{K}^{*}, \mathbf{K}^{* *}$ trajectory, the $I=\frac{3}{2}$ channel is exotic, and we require thet the p and f should be exchange degenerate with $\beta_{\rho \mathrm{KK}}=\beta_{\mathrm{fKK}}$.

In fact we can express all these requirements in terms of uctetwoctet cattering with SU(3) symmetry [147]. However, the symmetry can rot be exact for we need $\beta_{\mathrm{pKK}}=\beta_{\omega \mathrm{KK}}$, while SU(3) gives $\sqrt{3} \beta_{\mathrm{pKK}}=\beta_{\omega K K}$. But if we introduce a mix ing between the ϕ and ω, so that the physical ω particle is a mixture of the vetet and singlet $I=0$ states,

$$
|\omega\rangle=\cos \theta\left|\omega_{8}\right\rangle+\sin \theta\left|\omega_{1}\right\rangle,
$$

we can satisfy the duality reguirement with a mixing angle $\cos \theta=(3)^{-\frac{1}{2}}$, i.e. $\theta \approx 35^{\circ}$. This angle is the one obtained from the quark model if the θ consist onty of stratge quarks ($=\lambda \bar{\lambda}$) - the so called 'ideal' mixing angle - and is in rough agrocment with the experimental value obtained from the mass splitting, $\theta \approx 100$ [48]. This same angle is needed for f, f^{\prime} mixing if the f^{\prime} is to decouple from $\pi \pi$ scrterine 80 as not to spoil the above picture, and experimentally it is found that for the 2^{+} nonet ? $\approx 30^{\circ}[48]$.

If we proceed to examins forward meson-baryon scattering, exactly the same restrictions are needed - in fact we have already noted that the above degeneracy of $p, f . \omega$ and A_{2} is also needed to ensure no exotic resonances in \mathbf{K}^{+}p. New results come rom backward scattering however since the u channel trajectories can also give Schmid loops. The absence of $\mathrm{K}^{+} \mathrm{p}$ resonances requires a degeneracy of the $\Lambda_{\alpha, j}$ and $\Sigma_{\beta, \gamma}$ trajectories [148]. (There are many Y^{*} states but the others are weakly coupled, and may presumably be neglected to some approximation.) Similarly in $K^{-} p \rightarrow \Sigma^{+} \pi^{-}$the Δ resonances in the u channel ($\mathrm{K}^{+} \Sigma^{+}-\mathrm{p} \pi^{+}$) are dual to the $\mathrm{K}^{*}, \mathrm{~K}^{* *}$ $I=\frac{1}{2}$ trajectories, and there has to be a degeneracy betwe in the Λ and Σ trajectories in order to avoid $I=\frac{3}{2} \mathrm{~K}^{* \prime}$ s. So generalized to SU(8) we need a degeneracy between the various singlet, octet and decuplet trajactories having the same for related) quantum numbers [148]. This is partly substantiated by some of the best cases shown in fig. 38, but is not well satisfied in general.

Fig. 38. Sime examples of exchange degenerate baryon trajectories. These are the best examples. The trajectory splitting is much greater for other baryons.

The idea of duality thus produces an impressive set of predictions - that resonances fall into singlets, octets and decuplets only with no exotics, that the 2^{+}and 1^{-}mesons, and the octet and decuplet baryons, are exchange degenerate, nd that the 2^{+}and 1^{-1} mixing angles are about 35°. All these results may be expressed very simply with the 'duality diagrams' of Harari [149] and Rosner [150], in which each external particle is represented by lines corresponding to the quarks (p, n, λ) of which it is composed. The quarks maintain their ideatity throughout the process, and this tells one what the intermediate states in either channel are. Thus three quarks travelling in the same diractions give a baryon, while two travelling in opposite directions give a meson, and only diagrams with 2 or 3 quarir intermediate states are allowed (see fig. 38). Diagrams with crossing lines or more than this number of quarks are 'illegal'. These sules embody $\operatorname{SU}(3)$, no exotic itates, and the mixing angle.

There are, however, some serious problems with this duality scheme. The first concerns baryon-anti-baryon scattering. Here we have 3 quark lines in each direction (fig. 39) which is illegal so we predict that there are no meson resornnces in the $\mathrm{B} \overline{\mathrm{B}}$ channel. One night think of altering the rules to include them but it $d \mathrm{c}$: E

Fig. 39. Duality diagrams for (a) meson-meson and (b) meson-baryon scattering. (0) ic an 'illegal' meson-baryon diagram because the quark lines cross. (d) The diagram for baryon-anti-baryon scattering showing the four quarks in the $B \vec{B}$ intermediate state.
not seem to be possible to do this consistently [151]. For example in $\Delta \bar{\Delta}$ s cattering there are $I=0,1,2,3$ channels, and only $I=0,1$ should contain resc ances. Imposing no exotics in $I=2,3$ in both the s and t channels requires that ail the amplitudes should vanish. Another problem stems from the fact that the 0^{-}mesons do not have the ideal mixing angle, but rather $\theta \approx 10^{\circ}$ [48], so there is no consistent solution to the duality requirements for pronesses in which these trajectories can be exchanged, such as pseudoscalar-scalar, or pseudoscalar-vector scettering. And although we have found a solution with three groups of degenerate trajectories $\alpha_{p}=\alpha_{\omega}=\alpha_{f}=\alpha_{A_{2}}, \alpha_{\mathbf{K}^{*}} * \alpha_{\mathbf{K}^{* *}}$ and $\alpha_{\phi}=\alpha_{f^{\prime}}$, if one considers simultannously the three reactions $\pi^{+} p \rightarrow T^{+} p, \pi^{+} p \rightarrow K^{+} \Sigma^{+}$and $K^{+} \Sigma^{+} \rightarrow K^{+} \Sigma^{+}$, all of which contain Δ 's in the s channel, but which exchange members of different grcups in the t channel, one must require all the trajerrories to be degenetale\{152]. That is to say we need complete SU(3) degeneracy, despite the fact that we a so need a mixing angle. Also the attempts which have been made to fit amplitudss by a sum of the P plus direct channel resonances have not been all that impressive quantitatively [153,154], and in chapter 7 we shall show evidence that the exchange aisgeneracy of residues seems to be violated by factors of 2 and more.

So one must conclude that these dual models involving just poles bear at kest only a rather partial resemblance to the real world, though they do seem to have several merits as a first approximation. But so far we have only considered the construction of dual models in terms of their interral quantum numbers. We must now think about the construction of functions which satisfy the requirements of duality.

6.5. The Voneziano model

Thie Veneziano model [155, 156] is a simple analytic function whinh satisfes most of the requirements of duality in a model involving poles onty.

As an example we consider the amplitude for $\pi^{+} \pi^{-} \cdots \pi^{+} \eta^{-\cdots}$ which ha, poles in the s and t channels, but the u channel is exotic ($I=2$). Once the P contribution ias been removed we expect the leading coniribution to be the $\rho-f$ exchange degenerate trajectory in both channels. Duality requires that the sum of an infinite number of s-channel poles should be re-expressible as a sum of an infinite number of t-chanael pules, i " such a way that either sum gives the complete amplitude. And the
asymptotic behaviour must correspend to that of the lerding trajectory exchanged, in either channel.

The simplest functional form whics nas an infinite set of s channel poles lying on a trajectory $\alpha_{s}(s)$, with the pole3 appearing when $\alpha_{s}=$ positive integer, is $\Gamma\left[1-\alpha_{s}(s)\right]$. Since we require an identical behaviour in the t-channel we might try

$$
\begin{equation*}
A(s, t)=\Gamma\left[1-\alpha_{s}(s)\right] \Gamma\left[1-\alpha_{t}(t)\right] \tag{6.95}
\end{equation*}
$$

but this would have a double pole at every $s-t$ point where both α_{s} and α_{t} are integral [157]. (In our case α_{s} and α_{t} are the same fun tion, but in more general amplitudes this need not be true.) We can easily remove these poles by dividing by $\Gamma\left[1-\alpha_{s}(s)-\alpha_{t}(t)\right]$ so we end up with the Veneziano formula

$$
\begin{equation*}
V(s, t)=g \frac{\Gamma\left[1-\alpha_{s}(s)\right] \Gamma\left[1-\alpha_{t}(t)\right]}{\Gamma\left[1-\alpha_{s}(s)-\alpha_{t}()\right]} \tag{6.36}
\end{equation*}
$$

where g is an arbitrary constant gaving the scale of the couplings. This function has pole lines at fixed s and at fixed $!$, where the $a^{\prime} \delta$ are integers, and lines of zeros running diagonally through the intersections of the poles, as shown in fig. 40.

Its asymptotic behaviour may be obtained from Stirling's formula:

$$
\begin{equation*}
\Gamma(x) \underset{x \rightarrow \infty}{\rightarrow}(2 \pi)^{\frac{2}{2}} e^{-x} x^{x-\frac{1}{2}} \tag{6.37}
\end{equation*}
$$

except along the negative x axis where the poles occur. If we combine (6.37) with (4.70) we find that for large s, assuming $\alpha(s)$ is an increasing function of s as $s \rightarrow \infty$

$$
\begin{equation*}
V(s, t) \rightarrow \frac{\pi\left[\alpha_{s}(s)\right]^{\alpha_{t}(t)}}{\Gamma\left[\alpha_{t}(t)\right] \sin \pi \alpha_{t}(t)} \mathrm{e}^{-\mathrm{i} \pi \alpha_{t}(t)} \tag{6.38}
\end{equation*}
$$

Fig. 40. The Veneziano amplitude in the $s-t$ plane. Ths poles occur where $\alpha(s)$ and $\alpha(t)$ pass through rositive integers, and the lines of zeros connect the pole intersections diagonally in order to prevent there being double poles.

So if $a_{S}(s)$ is a linear function of $s, \alpha_{S}(s)=\alpha(0)+\alpha$ s we end up with Regge behavjour, $\dot{V}\left(s, \eta \sim\left(\alpha^{\prime} s\right)^{\alpha_{t}(t)}\right.$. Comparing this with (4.74) we see that we ohtain $\alpha^{\prime}=1 / s_{0}$ We have noted that s_{0} is usually token to be $\approx 1 \mathrm{GeV}^{-2}$ which agrees with the trajectory slopes, and this modal provades the only known connection between these two quantities; In fact it is the only prediction of s_{0} in any thenry known to the author. There is a problem, however, in that the asymptotic benaviour does not hold within a wedge along the real s axis because of the accumulation of s poles there.

Since, if $\alpha(s)=$ integer J (say) for some $s=s_{r}$ we have

$$
\begin{equation*}
\Gamma\left[1-\alpha_{s}(s)\right] \underset{s \rightarrow s_{r}}{-} \frac{(-1)^{J}}{(J-1)!\alpha^{\prime}\left(s-s_{r}\right)} \tag{6.39}
\end{equation*}
$$

and the expression $\left.\Gamma\left[1-\alpha_{t}(t)\right]\left\{\Gamma\left[1-J-\alpha_{t}\right)\right]\right\}^{-1}$ can be written as a polynomial in $t\left[=-2 q_{s}^{2}\left(1-z_{s}\right)\right]$ of order J, we find that the residue of the pole at s_{r} is

$$
\begin{equation*}
g\left(a^{\prime}\right)^{J-1} \frac{\left(2 q_{S}^{2}\right)^{J}}{(J-1)!}\left(z_{S}\right)^{J}+O\left(z_{S}^{J-1}\right) \tag{6.40}
\end{equation*}
$$

And if this polynomial in z_{s} is expressed as a sum of Legendre polynomials in z_{s} the highest term is $P_{J}\left(z_{\mathcal{S}}\right)$, so the pole corresponds io a degenerate sequence of resonances of spins $J, J-1, \ldots, 0$ i.e. a daughter sequence [158].

For $n \pi$ scattering the coupling factor g may be determined by ensuring that the residue of the rho meson pole on the leading trajectory at $J=1$ corresponds to the known $\rho \rightarrow \pi \pi$ decay width. Once this is done the whole $\pi^{+} \pi^{-}$amplitude (apart from the P) is fixed. The full $\pi \pi$ amplitude for all isospins nay then be found by adding $V(s, u)$ and $V(t, u)$ terms in accordance with the crossinc matrix and the absence of $l=2$ resorinces (see e.g. ref. [159]). The resulting r sonance spectrum is shown in fig. 41 with the degenerate daughter trajectorics below each of the parents. Unfortunately most of the required states are not known, as we have already seen in chapter 3. Similar Veneziano constructions can be made for other processes.

It is nlear that since the Veneziano model is an analytic function of s and t containing just poles, and having the correct asymptotic behaviour, it must provide a solution of the FESR consistency condition (6.28) [155, 160]. It has, however, a very serious deficiency in that the resonance poles all lie on the real ax: 3 and have

Fig. 11 . The $\sigma, \rho, f, g \ldots$ states required in the veneziann model for fit scattering. The open ircles above the parent trajectory zepresent the positions where ancestore occur if complex α^{\prime} s are used.
zero width. This prevents there being Regge behaviour on the real axis, and of course it is incompatible with the unitarity condition. It also means that it is not possible to compare the formula directly with experiment.

The trajectories should obviously have an imaginary part above threshold generate by unitarity, and if this is inserted inte (6.36) the poles are moved off the real axis, But this has the undesimable wide offects, that all the resonances at a given s value (all the daughters) have the same width (though they have different residues, and hence different elasticities), and that the residues of the poles cease to be polynomials in Σ_{s} and so there are resonances of arbitrarily high spin at every s_{r} point. The trajectories generated in this way which lie above the parent trajectory are called 'ancestors' [161] (fig. 41). (We have already noted a similar problem with Schmid loups.) Despite the fact that these trajectories lie higher than the parent the asympiotic behaviour of the amplitude is still given by the parent (i.e. in $\left.s^{c(t)}\right)$ by construction. This indicates that an amplitude with ancestors falls to satisfy the conditions for Carlson's theorem, and does not have a SommerfeldWatson representation. Even if we are prepared to ignore these a cestors this procecure still does not give very good agreement with experiment because the resultinf; Argand diagram loops are very poorly correlated with the resonances [162], and the amplitude is very oscillatory at intermediate energles and does not achieve a smooth Regge behaviour until very large $s(\approx 20 \mathrm{GeV})$ is reached unless Im $\alpha(1)$ is made to grow very rapidl; with s. In this case the resonances rapidily become so wide as to disappear [152, 163], unilike fig. 13.

Although there has been a large literature [164] on more sophisticated methods of unitarizing the Veneziano model all the different suggestions seem either to have sertons mathematical defects or to impose unitarity in such a way that the original dsality oroperties of the modei get lost in the process. The basic probiem is that the Veneziano model is independent of the external particle massos whereas the unitarity cuts depend directiy on these masses. It thus seems more-or-less inevitable that unitarity must break the duadity between the poles, and that this sort of dual model will only provide a non-unitary first approximation. And all attempts to confront dual models with experiment necessarily involve approximations which destroy some of their essential features.

There is also a lot of ambiguity in the precise form the Veneziano model should take. The particular form (6.36) is only one of a whole class of functions satisfying our requirements, and we can write more generally

$$
\begin{equation*}
A(s, t)=\sum_{l m n} c_{l m n} V_{l m n}(s, t) \tag{6.41}
\end{equation*}
$$

where the C's are arbitrary expansion coefficients and

$$
\begin{equation*}
v_{l m n}\left(s,,^{*}\right) \equiv \frac{\Gamma\left[1-c_{s}(s)+\eta \Gamma \Gamma\left[1-\alpha_{t}(t)+m\right)\right.}{\Gamma\left[1-a_{s}(s)-\alpha_{t}(i)+n\right]} \tag{6.42}
\end{equation*}
$$

where $l, m, i z$ are positive integers (or zero). Terans like (6.42) are known as veneziano satellites. They differ from (6.36) in that the first pole in s lies at $\alpha_{s}(s)=l+1$ not 1 , etc., and the asymptotic behavious is $s^{\alpha}(t)+m-n$, etc. Thus (6.42) provides a perfectly good solution to the FESK constraints which need to give no relation. what-so-ever botween the leading singularities in the s and t channels $[165,166]$. Only if boih sets of leading singularities appear ir the same Veneziano term are
they correlated. This sort of ambiguity highlights the difference between the FESR consistency sondition and a true bootstrap whose uniqueness depends on satisfying unitarity as well as the analyticity requirements.

The fact that the trajectories all appear in exchange degenerate pairs means that there as 2 no fixed poles in the residues, and the Regge pole amplitudes have wrot-signature zeros. It also means that the trajectories decouple from the sense as well as the insense amplitudes. Thus for examule in πN scaitering the f trajectory must decouple from the sense amplitude at $\alpha=0$ in order to avoicl a ghost, so by exchange def meracy the ρ decouples as well. In other worcis the trajectories all choose nonsense in the nomenclature of section (4.6). The Veneziano amplitudes themselves cortain fixed poles [167], however, because they contain (essentially) a third double spectral function (except in cases where there are exotic chamels with no resonances). These are unshielded by cuts of course, but since we do not apply the unitarity condition this does not matter.

Experimental applications of the Veneziano model require that we should be able to deal with particles having spin. This has not been done in a completely satisfactory way for arbitrary spins, because there are the usual problems of the parity doubling of straight Fermion trajectories, and the fact that the daughter sequences in the Veneziano model do not correspond to those of a Toller pole means that in ordr. r to satisfy the conspiracy relations etc. infinite sums of Veneziano terms with parity degeneracy are needed to give the Toller pole behaviour. None-the-less such processes as πN and $K N$ scattering have been treated by several authors, who represent the A and B invariant amplitudes by Veneziano models containing the appropriate trajectories [168, 169].

A comprehensive fit has been attempted by Eerger and Fox [169], who find that sizeable ratellite terms are needed, so that the cuality between the leading trajectories in the various chamels is broken. Also the Δ exchange residuc does not ca trapolate to the known $\pi N \Delta$ coupling constant at the $\Delta p v^{\prime}$. This and other examples would seem to prove that although the Veneziano r_{0} dnl may be a very interesting toy it is not in any sort of quantitative agreement with the two-particle \rightarrow \rightarrow twh-particle scatiering data.

One reason for ins continuing popularity is thai it can readily be generalized to processes involving many particles [170]. Thus we may rewrite (6.36) as

$$
\begin{equation*}
I\left(s, n=B_{4}\left[-\alpha_{s}(s)-\alpha_{t}(t)\right] i 1-\alpha_{s}(s)-\alpha_{t}(t)\right) \tag{8.43}
\end{equation*}
$$

w: ere

$$
\begin{equation*}
B_{4}\left(x_{1}, x_{2}\right) \equiv \int_{0}^{1} \mathrm{~d} u_{1} u_{1}^{x_{1}} u_{2}^{x_{2}} ; \quad u_{2}=1-u_{1} \tag{6.44}
\end{equation*}
$$

is the Euler beta function. The generalization to the live point function is then $\{171]$

$$
\begin{equation*}
B_{5}\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)=\int_{0}^{1} \mathrm{~d} u_{1} \int_{0}^{1} \mathrm{~d} u_{4} \frac{1}{u_{5}} u_{1}^{x_{1}} u_{2}^{x_{2} u_{3}^{x_{3}} u_{4}^{x_{4}} u_{5}^{x_{5}}, ~} \tag{5.45}
\end{equation*}
$$

with $u_{1}=1-u_{5} u_{2}, u_{2}=1-u_{1} u_{3}$ etc. It is outside the scope of this article to discuss Regge fits to many particle production processes [172], but it is evident that this representation provides a convenient way of coping with Regge hataviour in amplit des depending on nany variables. There is no reason to expect good quan-
titative fits with only single Veneriano terms because we know they can not be achieved for the 4-point function, but given the very approximute nature of the most of the muitiple production data a lew torma may be enough. Though reasonably good fits have been achieved they do not really tell us very much about duality. or (except in a very crude way) about the validity of multi-Regre models. For reviews see refs. [172, 17ij].

These many-particle models also give us turther insight into how to cope with spin. For example if one is interestedi in a four-point amplitude in which one of the external particles has spin, one can go to the sorresponding five-polnt function and take the residue of the pole corresponding to this particle. This residue gives the required four-point function, which will be a sum like (6.41) with determined coefficients. This has opened up exciting possibilities for dealing with multiparticle intermediate states in bootstrap problems [174], but so far nelther the self-consisiency of the approach nor the validity of the basic postulates has been established. See ref. [175]. One important consequence of such models is that factortzation demands that many of the trajectories should be multiple [176]. Thus 14 the leading parent trajectory is single, the first daughter is doubled and the second daughter 5 fold. These multiple trajectories do not necessarily have multiple poles at the lowest spin values but they do at the higher ones. There is of course no real evidence for such a multiplicity of resonances except perhaps for the splitting of the \mathbf{A}_{2}.

6.6. The problem of duality

It will be evident from the preceding discussion that the precise status of the duality concept is unclear. It seems to be possible tu construct an ideal dual world consisting of an infinite number of parallel Regge trajectories with zero width resonances which satisiy excinange degeneracy, exact $\operatorname{SU}(3)$ symmetry, and the ideal mixine angle between the singlet and uctet isosinglets, with no Pomeranchon. But sucil.. nodel can rot be compared directly with exveriment beca. se among othei things it violates unitarity. However, if we celax the strict duality requirements by giving the resonances finite widths and ignore the ancestor problem, put in $\mathrm{SU}(3)$ breaking for the trajectory functions and ignore the factorization prollem. and include the P, we find a world which it can plausibly be claimed bcars a strong qualitative resemblance to the real world. Indeed it provicies the only 'explanation' of riany facts (or seeming facts) such as the absence of exotic resonaices. the magnitude of the mixing angle, exchange degeneracy, and $a^{\prime} \approx 1 / s_{0}$

The agreement with experiment is far from being quantitative, but it is not cleas whether this is (a) because duality is only valid to an approximation; or (b) because we have not succeeded in constructing cual models for the real world, where unitarity applies, $S U(\$)$ and exchange degeneracy are broken, and cuts, and perhaps weak exotic resonances, exist; or (c) because duality is completely faise. Obviously unitarity must make quite a large aifference because among other things it will interreiate the \bar{P} with other trajectories, require the presence of new trajectories (such as those which appear at $L=-\frac{1}{2},-\frac{3}{2} \ldots$ which we normaliy choose to ignore) and will require cuts to shield the fixed poles. The failures of Regge fits involving just poles, such as the factorization problems which arise with conspiracies and at the cross-over point (see chapter 7), and the need for cuts to explain some of the $\mathrm{do} / \mathrm{d} t$ dips, make it obvious that if dual models are te have any hope of succeeding some way must be found to incorporate cuts. To give just one example, if the pion conspiracy explanation of the forward peak in $\gamma p \rightarrow \pi^{+} n$ is rejected hecause of fac-
turleation problems, this peak must be due to a cut. However in terms of the s chame; thie peak is produced by the resonances, in particular the nucleon Born term [177]. So the nucleon pole must be dual to a Regge cut in this process, not a trajectury.

It has been suggested that the Veneziano model shouid be regarded as a cont of Dow depraximation for strong interactions [174], and that if some sort of unitarity tteration were applied the physical S-matrix would result. But quite apart from the difficulties of carrying out such a unitarization program it is by no means clear that the final amplitudes will obey tuality just because their Born approximation does.

What is worse we have seen seen that if duality is not accepted at the outset then the criteria used for identifying resonances by partial wave analysis are inconclusive, and the existence of a resonance can only finally be decided wher we have a dynamical model (involving unitarity) which iells us how to continue onto the physjcal sheets. One can not tell by looking at experimental data alone, except in the case of very strongly coupled elastic resonance like the Δ. Thus even if the observed 'resonances' (Argand loops) can be made to saturate the amplitude this still does not prove that duality is true because we do not know if they really are resonances.

The author is thus led to the somewhat pessimistic conclusion that the duality iden will only really become experimentally verifiable if a dynamical model which incorporates it can be constructed. Until then it will remain a suggestive but tantalisingly inprecise idea whose meaning is unclear, and whose application to phenomerology is iraught with ambiguities. On the other hand if such a dynamical model car be found it may well be able to explain most of what we now know, or think we know, about strong interactions.

CHAPTER 7
 HIGY ENERGY PHENOMENOLOGY

7.1. Exchange models

The principal aim of Regge phenomenology is to try and identify the exchange forces which control elementary particle scattering. We have discussed the main features of the Regge pole and cut exchanges in chanters 4 and 5 , and in this chapter we shall give a ratner brief survey of the successes and failures of Regge nodels.

The dominant singularities in any reaction are those "hich lie right-most in the complex J-plane. In constructing exchange models one must of course bear in mind the ristrictions of charge, baryon number, strangeness, and G-parity nenserva'ion, and charge conjugation invariance, as wel as the $\operatorname{SU}(2)$ isospin symmof n. The trajectories exchanted must curvespond to the known partioles, as discussed in chapter 3, and the various residues of a given pole must be related by factorization. We may also try to add the additional restrictions of SU(3) symmetry for the residues, and exchange degeneracy. Though the cuis are much less resticted, we have seen in chapter 5 how their powe z tehaviour is fulated to the of the poies, and that there are various models which can be used, " least tentatively, to try and estimate the magnitude of the cuts.

We shall see that some featw --. . Regge model, such as the fact that the energ: dependence of the amplitudes close to the fownard and bactand directions
should correspond to the highest trajectory which can je exchanged, are very woid verified. But there is rather more freedom at larger angles due to the alternative choices of sense or nonsense, etc., the arbitrariness in the behaviour of the residue functions, and the uncertainiy in the magnitude of the cuts.

The experimental information available is greatly restricted because the only high energi heams avaiable for experiments are $\pi^{ \pm}, K^{ \pm}, \mathrm{p}, \overline{\mathrm{p}}$ and γ, and the only elementary particle targets are the p and the n. (The n is sufficiently loosly bound in the deuteron for one to be able to deduce reutron scattering from deuteron scattering with some confidence.) Since isospin relates $\pi^{+} p \equiv \pi^{-} n$ and $\pi^{-} p=\pi^{+} n$ this means that there are just 12 possible incident channels. Fortunately there is a much greater variety of two-body final states because one can measure resonance production processes such as $\pi \mathbf{N} \rightarrow \pi \Delta \rightarrow \pi \pi N$ with reasonable accuracy. Table 5 contains a list. of most of the two-body processes which have been analysed, together with the trajectories which can be exchanged.

We antirinate that elastic scattering will de dominated by the Pomeranchon, P, with $\alpha(0) \approx 1$ (see section 4.8), but there are also the f (assuming this to be different from the ${ }^{\prime}$) and the f^{\prime} trajectories. Each of these has vacuum quantum numbers, which means that they can also be exchanged in quasi-elastic processes (i.e. no çuantum number exchange). There are also the $I=0 \omega$ and ϕ trajectories which involve no exchange of internal quantum numbers, but which have negative G parity, so their coupling to processes involving mesons is restricted. Because they are so similar it is usually impossible to separate their contributions which are lumped together. The neutral members of the $I=1 \rho$ and A_{2} trajectories are also present in many elastic processes, but these trajectories also dominate charge exchange process, which demand an $I=1$ exchange. The $I=1$ pion is a mu-lh lower trajectory than any of the above (see fig. 5), but because of its strong couping, and the nearness of the exchanged pion pole to the direct-channel physical region, it is ofien essential for explaining the data near the forward direction. We therefore treat pion exchange processes separately in table 5 . Processes with strangeness exchange require K^{*} and $\mathrm{K}^{* *}$ trajectories, ard also, where quantum numbers allow, the K . Yor baryon exchange processes (i.e. the backward direction in meson baryon scatcering) we may need the N_{α}, N_{γ} and Δ_{δ} trajectories, depending on the amount of charge exchanged, or, if strangeness is also exchanged, the Λ and Σ trajectories will be used.

With this set of leading trajectories, i.e. $\mathbf{P}, \mathbf{f}, \omega(\phi), \rho, \mathrm{A}_{2}, \pi, \mathbf{K}^{*}, \mathbf{K}^{* *}, \mathrm{~K}, \mathrm{~N}_{\alpha}$, $N_{\gamma}, \Delta_{\delta}, \Lambda_{\alpha}, \Lambda_{\gamma}, \Sigma_{\alpha}, \Sigma_{\beta}, \Sigma_{\gamma}$ and Σ_{δ}, we can hope to fit all the various two-bo ${ }^{+4}$ processes. There may be complications due to the presence of secondary trajectorice with the same quantum numbers (referred to with primes, e.g. $f^{\prime}, \rho^{\prime}$), but fig. 6 suggests; that these are all much lower than the leading trajectories and wili no be very important unless they have very strong couplings or smail slopes. There wiil also be cuts, but the dominant cuts in any process are always those stemming from the higheist trajectory which can be exchanged together with the Pomeranchon, and these wiil have the same quantum numbers (except parity) and ine same intercept, as the leading trajectory (see section 5.6). Other cuts produced by the exchange of two or more Reggeons other than the P will have a lower intercept than the leading trajectory and are unlikely to be very important except in those processes where no single trajectory can be exchanged. We discuss some examples below. Other + ajectories such as the $\mathrm{A}_{1}\left(I=1, J P C=1^{++}\right)$and $\mathrm{B}\left(I=1, I P C=1^{++}\right)$are some times invoked, but they are likaly to be rather low lying. The main reason for ving them in the past has been to obtain a contribution of opposite parity to that

Tabie 5
Regge fits.

Process	Trajectories	References io fits
Charge exchange mocesses		
$\pi-\mathrm{p} \rightarrow \pi^{\circ} \mathrm{n}$	ρ	[104, 182-201, 206, 281, 35'7, 361]
$n-p \rightarrow \eta^{\circ} \mathrm{n}$	A_{2}	[128, 190, 195, 196, 199, 202, 206, 281-284, 357.361]
$\mathrm{K}^{-} \mathrm{p} \rightarrow \overline{\mathrm{k}}^{\mathrm{o}} \mathrm{p}$	$\left.p+A_{2}\right\}$	$[183,190,195,196,199,203,204,206,242,281$,
$\mathrm{K}^{+} \mathrm{p} \rightarrow \mathrm{K}^{\mathrm{O}} \mathrm{p}$	$\left.p+A_{2}\right\}$	287,288,357,358,361]
$\pi^{+} p \rightarrow \pi^{0} \Delta^{++}$	ρ	[205, 206, 281, 289-291]
$\pi^{+} p \rightarrow \eta \Delta^{++}$	A_{2}	[205, 206, 281, 291]
$\mathrm{K}^{+} \mathrm{p} \rightarrow \mathrm{K}^{\mathrm{C}} \Delta^{++}$	$\left.\rho+A_{2}\right\}$	[203-206, 289]
$\mathrm{K}^{-} \mathrm{n} \rightarrow \overline{\mathbf{K}}^{\circ} \Delta^{-}$	$\left.\rho+A_{2}\right\}$	[203-206, 283$]$
$\pi \mathrm{N} \rightarrow \omega \mathrm{N}$	p	[206, 292, 293]
$\pi \mathrm{N} \rightarrow \omega \Delta$	ρ	[216, 292-294, 296, 326]
$\pi \mathrm{N} \rightarrow \mathrm{A}_{2}{ }^{\text {S }}$	ρ	[206,294]
$\gamma \mathrm{p} \rightarrow \pi^{\mathrm{o}} \mathrm{p}$	$\rho+\omega$	[129, 207-210,216, 294, 297, 299-303]
$\gamma \mathrm{p} \rightarrow \eta \mathrm{p}$	$\rho+\omega$	[2C9-210,294]
Hypercharge exchange processes		
$\pi^{-} \mathrm{p} \rightarrow \mathrm{K}^{\circ} \Lambda$	$\mathrm{K}^{*}+\mathrm{K}^{* *}$	$[203,204,213,281,304,357]$
$\pi^{-p} \rightarrow \mathrm{~K}^{0} \mathrm{z}^{0}$	$\mathbf{K}^{*}+\mathbf{K}^{* *}$	[203,204, 213, 201, 26: 30: 3 ,
$\pi^{+} \mathrm{P}-\mathrm{K}^{+5}+$	$\mathrm{K}^{*}+\mathrm{K}^{* *}$	[213, 281, 304, 357, 358]
$\mathrm{K} \mathrm{p}-\pi^{\mathrm{o}} \mathrm{A}$	$\mathrm{K}^{*}+\mathrm{K}^{* *}$	[204, 305,357]
$K^{-n} \rightarrow \pi^{-} \mathrm{A}$	$\mathbf{K}^{*}+\mathbf{K}^{* *}$	[203, 213, 304]
$\mathrm{k} \mathrm{p} \rightarrow \pi^{-\Sigma^{+}}$	$\mathbf{K}^{*}+\mathbf{K}^{* *}$	$[203,204,213,289,304,357,358]$
$\mathrm{K} \mathrm{n} \rightarrow \pi^{-} \Sigma^{0}$	$\mathrm{K}^{*}+\mathrm{K}^{* *}$	[213, 304]
$K^{-p} \rightarrow \pi^{-5 *-(1385)}$	$\mathrm{K}^{*}+\mathrm{K}^{* *}$	[203,306]
Pseudoscalar meson exchange processes		
$\pi p \rightarrow \rho \mathrm{~N}$	$\pi+\mathrm{A}_{2}+\omega$	$[104,206,244,294,307]$
$\pi \mathrm{p} \rightarrow \mathrm{f}_{0} \mathrm{~N}$	$\pi+A_{2}$	
$\pi p \rightarrow \mathrm{~A}_{2}$.	7	!206]
$\pi \mathrm{p} \rightarrow \mathrm{os}$	$\pi+\mathrm{A}_{2}$	[104, 225, 299, 305-310, 396!
$\pi \mathrm{p} \rightarrow \mathrm{f}_{0} \Delta$	π	[310]
$\mathrm{m} \rightarrow \mathrm{np}$	$\pi+\rho+\omega+\lambda_{2}$	$[215,217,220,245,311,312]$
$p p \rightarrow \mathrm{~N} \Delta$	$\pi+\rho+\omega+A_{2}$	$[216,218,219]$
$\underline{y} \rightarrow \Delta \Delta$	$\pi+\rho+\omega+A_{2}$	
$\rho \mathrm{p} \rightarrow \mathrm{nn}$	$\pi+\rho+\omega+\mathrm{A}_{2}$	$[104,215,217,220,311]$

Table 5 (continued)

Process	Trajectories	References to fits
Pseudoscalar meson exchange processes		
$\underline{p} \boldsymbol{p} \rightarrow \Delta \bar{\Delta}$	$\pi+p+\omega+A_{2}$	[216, 218, 310]
$\gamma \mathrm{p} \rightarrow \pi^{+} \mathrm{n}$	$\pi+p+A_{2}$	$[71,104,207,214,216,218,221,299,318-319]$
$\gamma \mathrm{n} \rightarrow \mathrm{a}^{\sim} \mathrm{p}$	$\pi+\rho+A_{2}$	
$\gamma p \rightarrow \pi-\Delta^{++}$	$\pi+\rho+A_{2}$	[216, 218, 225, 226, 314]
$\mathrm{p} \overline{\mathrm{p}} \rightarrow \Lambda \bar{\lambda}(\Sigma \bar{\Sigma})$	K+K* $+\mathrm{K}^{* *}$	[213, 229]
$\mathrm{yp} \rightarrow \mathrm{K}^{+} \Lambda(\Sigma \mathrm{S})$	$\mathbf{K}+\mathbf{K}^{*}+\mathbf{K}^{* *}$	[71, 207, 228, 312, 314]
$\gamma \mathrm{p} \rightarrow \mathrm{K}^{*+} \Lambda\left(\mathrm{\Sigma}^{\mathrm{O}}\right)$	$\mathbf{K}+\mathrm{K}^{*}+\mathrm{K}^{* *}$	

Baryon exchange processes
$\pi-\mathrm{p} \rightarrow \mathrm{p} \pi^{-}$
$\pi^{+} \mathrm{p} \rightarrow \mathrm{F} \pi^{+}$
$\mathrm{K}^{-} \mathrm{n} \rightarrow \mathrm{N} \pi^{-}$
$\mathrm{pp} \rightarrow \pi^{+} \mathrm{d}$
$\gamma p \rightarrow n \pi^{\dagger}$
Tp $+p_{p} 0$
$\left.\begin{array}{c}\Delta_{\delta} \\ \mathrm{N}_{\alpha}+\mathrm{N}_{\gamma}+\Delta_{\delta}\end{array}\right\}$
[132, 320, 321, 235, 236, 238, 321, 350]
$r p \rightarrow p \eta$
$\gamma \mathrm{p} \rightarrow \mathrm{p} \rho$
$\gamma \mathrm{p} \rightarrow \Delta^{++} \pi^{-}$
$\mathrm{N}_{\alpha}+\mathrm{N}_{\gamma}$
[237, 238]
$\mathrm{N}_{\alpha}+\mathrm{N}_{\boldsymbol{\gamma}}$
[234]
[231, 233, 235, 322, 323]
$\pi p \rightarrow A k^{\circ}$
$\mathrm{K}^{+} \mathrm{p}-\mathrm{pi}^{+}$
Elastic processes

$\begin{aligned} & \pi^{-} p \rightarrow \pi p \\ & \pi^{+} p \rightarrow \pi^{+} p \end{aligned}$	$\begin{aligned} & \mathrm{P}+\mathrm{f}+\rho \\ & \mathrm{P}+\mathrm{f}-\rho \end{aligned}$	$\begin{aligned} & {[133,136,153,154,169,183,189,196-198,242,} \\ & 245-247,250,255,258,260,327-336, \cdots: 343] \end{aligned}$
$\mathrm{K}-\mathrm{p} \rightarrow \mathrm{K}-\mathrm{p}$	$\mathrm{P}+\mathrm{f}+\rho+\omega+\mathrm{A}_{2}$	
$\mathrm{K} \mathrm{n}^{-1} \mathrm{~K} \sim \mathrm{n}$	$\mathrm{P}+\mathrm{f}-\mathrm{p}+\omega-\mathrm{A}_{2}$	$[127,153,169,183,196,242,250,254,255$,
$\mathrm{K}^{+} \mathrm{p} \rightarrow \mathrm{K}^{+} \mathrm{p}$	$\mathrm{p}+\mathrm{f}-\mathrm{p}-\omega+\mathrm{A}_{2}$	258-260, 284, 28v, 288, 327, 337-3431
$\mathrm{K}^{+} \mathrm{n}^{+} \rightarrow \mathrm{K}^{+} \mathrm{n}$	$\mathrm{p}+\mathrm{f}+\rho-\omega-\mathrm{A}_{2}$	
$p p \rightarrow p p$	$\mathrm{P}+\mathrm{f}-\rho-\omega+\mathrm{A}_{2}$	
$\mathrm{pr} \rightarrow \mathrm{pn}$	$\mathrm{P}+\mathrm{f}+\boldsymbol{\rho}-\mathrm{c}+\mathrm{A}_{2}$	
$\bar{p} p \rightarrow p p$	$\mathrm{P}+\mathrm{f}+\mathrm{f}+6)+\mathrm{A}_{2}$	[220,243, 252, $255,260,263,344-149]$
$\mathrm{pn} \rightarrow \mathrm{pm}$	$\mathrm{p}+\mathrm{f}-\mathrm{p}+\mathrm{l}-\mathrm{A}_{2}$	
$\gamma \mathrm{p} \rightarrow \gamma \mathrm{p}$	$\mathrm{P}+\mathrm{f}+\boldsymbol{p}+4+\mathrm{A}_{2}$	[$267,351-354]$

Table 5 (continued)

Process	Trajectories	References to fits
Quasi-elastic processes		
$\pi p \rightarrow \pi N^{*}(1400)$ etc.	$\mathrm{P}+\mathrm{f}+\boldsymbol{p}$	[268,274]
$\gamma \mathrm{p} \rightarrow \rho^{\circ} \mathrm{p}$	$p+A_{2}+\pi$	[216, 226, 314, 355, 358]
$\gamma \mathrm{p} \rightarrow \omega_{p}$	$P+A_{2}+\pi$	[$216,226,314,355,356]$
$\gamma p \rightarrow \phi p$	$\mathrm{P}+\mathrm{A}_{2}+\pi$	[226,269, 270, 314, 355,356$]$
Exutic exchange processes		
$\pi{ }^{+}-\mathrm{K}^{+} \Sigma^{-}$	(KK^{*})	
$\mathrm{K}-\mathrm{p} \rightarrow \mathrm{K}^{+} \mathrm{ES}^{-}$	(NK^{*})	
$K \mathrm{p} \rightarrow \mathrm{K}^{\circ} \mathrm{Z}^{+}$	($\mathrm{K}^{*} \mathrm{~K}^{*}$)	
$\pi \mathrm{p} \rightarrow \pi^{+} \Delta^{-}$	($\rho \rho$)	
$K^{-} \mathrm{p} \rightarrow \pi^{+} \Sigma^{-}$	($\mathrm{PK}{ }^{*}$)	
$\mathrm{K}^{-} \mathrm{p} \rightarrow \mathrm{p}^{+} \Sigma^{+}$	(MK^{*})	
$p \mathrm{p} \rightarrow \mathrm{\Sigma}$ S	(OK^{*})	
$\mathrm{K} \mathrm{p} \rightarrow \mathrm{pK}^{-}$	$\left(\mathbb{K}^{*} \Delta\right)$	
$\mathrm{K} \mathrm{p} \rightarrow \mathrm{n} \overline{\mathrm{K}}^{\circ}$	($\mathrm{K}^{*} \Delta$)	
$\overline{\mathrm{p}} \rightarrow \boldsymbol{\Lambda} \overline{\mathrm{A}}, \underline{\mathrm{E}}$	(NA), (N2)	

provided by the leading trajectories, especially in conspiracy models. Su:h opposite parity contributions are also provided by cuts, however, since they do a have definite parity (thas the B is similar to a ρP cut, and the A_{1} to a πP cut), 2 m it is probable that they will not be necessary if strong cuts are included.

If we are to try and isolate the contributions of the various singularities if is obviously desirable to start with processes where only a few trajectories can be exchanged, and for this reason we begin our discussion with quantum-n mber exchange reactions before proceeding to the more complicated elastic scattering processes. This is the reason for the grouping in table 5 .

This table also includes a representative set of references to some of the mor: recent fits so that the reader can compare for himself the various Regse models. From these papers it should be possible to trace the earlier literature where necessary. We have ces tainly not attempted to mention all (or even most) of "he fits to a fiven process (the author is aware of some 70 papers on fitting - $-p-+0_{n}$ fur exarple), nor can we hope to be completely up to date. The discussion whis: fotlows is concentrated on what we feel are some of the mosi interesting problems. and we can only plead for the indulgence of the autiors of neglected papers, and rem ; id the reador that other thorough reviews have been given receatly in rels. [15.1', 178-181].
7.2. Charge excharge processes
a) $\pi \sim p \rightarrow \pi^{\circ}$. Tatie 5 shows that only one of our set of Regge poles, the ρ, can be exchanged in this process, and because of this it has been subjected to very close scruliny, and fitted by many kinds of Regge models.

We have already presented some of the data, and a simple one pole fit in figs. 15 and 1f. In fact it is possible to obtain a very good representation of the data if the ρ chooses sense [182-185], and has a zero in the sense-nonsense amplitude $A_{+\infty, 00}$ (see section 4.6) at $\alpha=0$, i.e. there is no wrong signature fixed pole in the residue. (We use the amplitudes (4.11).) The forward dip is explained by the dominance of the spin flip amplitude, which of course has to vanish in the forward direction, and the dip at $t \approx-0.6$ is accounted for by the nonsense zero in this amplitude.

Unfortunately this nice simple picture became untenable when it was discovered that there is a substantial polarization (shown in fig. 42). The polarization of particle 3 normal to the scattering plane, \mathbf{P}, is given by

$$
\begin{equation*}
\mathrm{P} \frac{\mathrm{~d} \sigma}{\mathrm{~d} t}=\sum_{H_{S}}\left[\left(\sigma_{3}+\mu_{3}\right)\left(\sigma_{3}-\mu_{3}+1\right)\right]^{\frac{1}{2}} \operatorname{Im}\left[\left\langle\mu_{3}-1 \mu_{4}\right| A\left|\mu_{1} \mu_{2}\right\rangle\left\langle\mu_{3} \mu_{4}\right| A\left|\mu_{1} \mu_{2}\right\rangle^{*}\right] \tag{7.1}
\end{equation*}
$$

and so depends on there being a phase difference between the amplitudes. We have noted that a single Regge pole gives the same phase to all amplitudes (assuming a and γ are real) and so the single pole fit must b : wrong.

However it is not difficult to think up other contributions which might interfere with the o to produce this phase difference. Cue possibility is interference with direct channel resonances [186-188], though this explanation is in conflict with duality which requires that these poles should already be included in the Regge poles. The presence of another trajectory, the ρ^{\prime}, is suggesteci by the work of ref. [.33] (see section 6.2), and has been used by several authors [189-192]. The ρ^{\prime} so citained has quite a large intercept (≈ 0 in ref. [189]) and is murh alove the daughter value $\left(\alpha_{0}(0)=\alpha_{0}(0)-1\right)$. Another suggestion, inspined by the fact that the A_{2} with which the ρ may be exchange degenerate is known to be split [48], and by the multiplicity of trajectories found in multi-particle dual models (see section $6.5)$, is that the ρ trajectory is doubled. A small separation $\alpha_{\rho},-\alpha_{\rho} \approx 0.1$ can ex-

Fig. 42. The polarization in $\pi-p-\pi^{\mathrm{O}_{\mathrm{n}}}$ from Bonamy et al., Phys. Letters 23 (1968) 50:.
plain the polarization [193]. Models have also been suggested in which the secondary p^{\prime} trajectory is a $\Lambda=1$ conspirator [191-192, 194-195], which has the advantage of explaining the zero in the non-flip amplitude at $t \approx 0.15$. This 'cross-over' zero is not apparent in simple fits to the high-energy charge-exchanse differentia: sross section because of the dominance of the flip amplitude, but is is nerded to explain the fact that in $\pi \mathrm{N}$ elastic scattering the difference

$$
\left[\frac{\mathrm{d} \sigma}{\mathrm{~d} t}\left(\pi^{-} \mathrm{p}\right)-\frac{\mathrm{d} \sigma}{\mathrm{~d} t}\left(\pi^{+} \mathrm{p}\right)\right]
$$

changes sign at this point (see section 6 below), and it is also demanded in the charge exchange process ky FESR [133], a fact which we noted in section 6.2. There have been many papers applying FESR to determine the pole parameters following the work of ref. [133].

Once one includes some such additional contribution besides the ρ pole one can if one wishes allow the p residue in the non-flip amplitude to vanish at $\alpha=0$ along with the flip ampitude without there being a zero of $\mathrm{d} \sigma / \mathrm{d} t$. This means that equally good fits can be obtained with the ρ choosing nonsense instead of sense [196]. This choice of nonsense is of course required if the ρ is to be exchange degenerate with the f. The thergy dependence in the region of the dip is not very different frum othert ralues, however, so the additional contribution can not be much lower in the J-plane than the p.

An obvious way to obtain such a seconiary こnntribution is of course from cuts. These can readily fill in the dip with thr right sort of energy dependeace, and may also account for the cross-over zero [$37-198$], though in practice it seems to be difficult to get this zero in the right place - it tends to want to be nearer to the pole zero, say ar $t=-0.3--0.4$. A more radical suggestion is that (as discussed in section 5.6) the cuts are very strong and interfere with the of ofis to promes the dip at $t=-0.6$ without there being a zer: of the pole am Litude; i.e. there is a strong fixed pole in the ρ resicue at $\alpha=0$. Fits of this ype rave been obtained [400], though there is some difficulty in fiting the data for $: \hat{t} \mid>0.5$ because the smaller slope of the cut tends to make the shrinkage of the differential crose ce:tion too small at these larger t values [178]. A plot of the effective trajectory, $\alpha_{\text {eff }}$, due to the sum of the cut and pole in this modiel, which raakes this problem rather evident, is presented in fig. 43. It will be easier to assess the severity of this problem when higher-energy data are available. The existence of a strong fixed pole, which therefore requires a strong cut, is certainly suggested by the FESR analysis of ref. [133] (see also ref. [201]).

This brief discussion highlights both the successes and the failures of Regge theory. Fig. 16 is certainly excellent evidence for the dominance of a moving Regge si.sularity associated with the ρ pole. But despite the reasonably good data we can not peven be sure whather the pole is finite in both $A_{+-}, 00$ and $A_{++.00}{ }^{\text {at } t=-0.6}$ (and there is strong cut), or is finite in $A_{+\frac{1}{4}, 00}$ but not $A_{+=, 00}$ (i.e. choose:, sense). or vanishes in both (chooses nonsense). And the secondary contribution may be an additive pole, the p^{\prime}, or a cut (strong or weak) or direct chansel resonarces: fairly goo; fits can be obtained with any of these hypotheses. Of course some adoitional information car be obtained by examining other processes to which the ρ also contributes, but the ambiguities persist. In fact we shall find that it is quite impossible to arrive at an agreed set of Regge parameters for any process; the parameters of ained always depend on the model which has been used for the fit.

One can of course invoke additional principles such as excnange degeneracy

Fig. 43. The effective trajectory in the strong cut model for $\pi-p \rightarrow \pi^{\circ} n$ compared with the experimental values, from ref. [178].
which requires all poles to choose nonsense, or, at the other extreme, suppose that all dips are due to cuts interfering with the poles just because some of the dips predicted by the nonsense factors in poles do not occur. But the unbiased observer has to admit that at the moment almost any of the above models cin be made to give a reaso: - fit with sufficient ingenuity, and none has an overwheming gdvantage for all processes. We shall therefore not go into much detail below in describing the parameters of the fits but will leave the reader to look up those in which he is interested.
b) $\pi^{-p} \rightarrow \eta n$ and KN charge exchange. The process $\pi^{-p} \rightarrow \eta n$ is very similar to the above except that the A2 ratter tran the ρ is the only pole from our list which can be exchanged. The basic featuras also seem to be quite similar in that the spin flip an plitude appears to dominate (tliough the forward dip is less evident), but there is no dip at $t=\mathbf{- 0 . 6}$. This mean that the slone of the trajectory is harder to determine.

The early fits used a rather small slope [202], principally because they astsumed the Chew mechanism (see section 4.6) which gives a dip at $\alpha=0$ due to the vanishing of the flip amplitude. (Of course the sense amplitude remains tinite as the residue zero is cancelied by the pole). However if the trajectory choose n nonsense both amplitudes are finite (see table 4) and there is no difficulty in fitting with a trajectory similar to that of the $\rho[185]$. But even this is not conclusive, for of the non-1]ip residue is given the change of sign at $t \approx-0.15$ suggested by the crossmover effect a good fit with the Chew mechanism and a normal slope for the A_{2} is possible because of an interference between the two amplitudes. If the ρ and A2 trajectories are exchange degenerate of course both must choose nonsense.

Since this process is kinematically very similar to $\pi^{m} p \rightarrow A^{\circ} n$ the strong cut model would also expect a dip, and its absence has to be explained by a smaller value of λ [180], or by non-degenerate couplings [361].

The processes $K p \rightarrow \bar{K}^{\circ}{ }_{n}$ and $K^{+}{ }_{n} \rightarrow K^{0} \mathbf{p}$ are related to the above in that they require both the ρ and A_{2} with same couplings at the nucleon end. In fact if one assumes SU(3) for the residues one can predict them directly from the fits $\pi^{\circ} \mathrm{p} \rightarrow \pi^{\circ} \mathrm{n}$ and $\eta \mathrm{n}$. Equally good iits can be obtained with either the sense or nonsense choosing mechanism so there is no resolution of this ambiguity [185].

These processes can also provide a test of exchange degeneracy because if the ρ and A_{2} are exactly exchenge degenerate the $K^{+} n \rightarrow K^{\circ} p$ amplitude must be purely real (see (4.92)) while that for $K_{p} \rightarrow \bar{K}^{0}$ has the $e^{i ; \alpha}(t)$, and two diffurential cross sections should be exactly equal. In fact the $K^{\circ} \mathrm{n}$ data is larger than $K \mathrm{p}$ as low energies ($<5 \mathrm{GeV}$), but they seem to be equal at higher energies $[203,358,360]$. farious suggestions have been made to account for the discrepancy at low energy, such as a splitting of the trajectories [204] (the A_{2} is heavier than the f), secondary trajectories [204], or cuts [358]. However the leading cut (generated by the P) produces an effect in the wrong direction, and pole-pole cuts must be blamed [358].
c) Other hadronic charge-exchange processes. The remaining cnarge exchange processes in table 5 all involve resonance production. This fact introduces further ambiguities both because the data are less accurate, and because with the higher spins there are more residue parameters to juggle with. The set of processes $\pi^{+} \mathrm{p} \rightarrow \pi^{0} \Delta^{++}, \pi^{+} \mathrm{p} \rightarrow \eta \Delta^{++}, \mathrm{K}^{+} \mathrm{p} \rightarrow \mathrm{K}^{0} \Delta^{++}$and $\mathrm{K} \mathrm{n}^{-} \rightarrow \overline{\mathrm{K}}^{0} \Delta^{-}$are similar io those discussed above in requiring ρ, A_{2} and $\rho+A_{2}$ exchanges respectively, while $\pi N \rightarrow \omega_{1} \mathrm{~N}$, $\pi N-\omega \Delta a n d \pi N \rightarrow A_{2} \Delta$ require only the ρ. Fits to various combinations of these processes have been attempted [205,206] using some of the different types of models described above. There is of course zo difficulty in fitting, but no narrowing of the range of possibilities either.
d) Neutral pseudoscalar-meson photoproduction. This is a convenient point at which to discuss two photoproduction processes which though they do not involve charge exchange should be controlled by the non-strange vector mesons ρ and ω, i.e. $\gamma p \rightarrow \pi^{\circ} \mathrm{p}$ and $\gamma \mathrm{p} \rightarrow \eta \mathrm{p}$.

The data for $\gamma p \rightarrow \pi^{\circ}$ p shown in fis. 44 are in fact consistent with an effective trajectory which is fixed at zero [1'8], which may perhaps indicate a non-Fegge behaviour. But it is not too difficult to reproduce this effent (within the rather large errors) by a suitable combination of singularities. Fixed poles are ruled out by unitarity, but of course a fixed power behaviour may b. obtained from a 0,0 term in the J-plane, and various fixed power fits have been suggested.

The differential cross section has a forward dip followed by a further dip at $t \approx-0.5$, which is suggestive of an ω on ρ non iense zero. The dip appears t, he filling up with energy, however. Cross sect:c: sfor scatiering by polarized photons have been measured, and it is founs that perpendicular polarization dominates. This is controlled asymptotically by nailurai parity exchange, so it confirms the dominance of the ρ and ω trajectoriss, and shows that the dip is not filled in by a negative parity object such as the B which was used in earlier fits [207]. If one makes use of the $\gamma \mathrm{n} \rightarrow \pi^{\mathrm{O}} \mathrm{n}$ data it is possible to make an isospin decomposition as well, and it is found that some isovector ρ contribution is definitely needed along with the isoscalar ω. A model with ω and ρ together with $\omega \mathrm{F}$ and $\rho \mathrm{P}$ cuts appears to fit the data fairly well [208], but as usual it is not clear whether the cuts should be strong enough to produce the dip [209], or merely to fill in tc some extent the dip produced by the poles.

The process $\gamma p \rightarrow \eta p$ has exactly the same exchange, and it is rather surprising that there is no corresponding dip at $t=-0.5$. Presumably ρ exchange dominates. and it has been argued that the absence of a dip can only naturally be explained by a strong cut model [209,210], though the B trajectory has been invoked [211] as an alternative way of fitting it. Higher energy data she ild be able to distinguish between these explanations.

It has been noted [117, 212] that the presence or absence of dips in some of these processes can be explained in terms of the rule enunciated in section $5.6 e$, that a

Fis. 44. The differential cross section, and $\alpha_{\text {eff }}(t)$ for $\gamma p \rightarrow \pi^{\circ} p$ from ref. [224].
cut-pole interference gives a dip at $t \approx-0.6$ if the dominant amplitude has helicity flip $\Delta h \equiv\left|\mu_{1}-\mu_{3}\right|-\left|u_{2}-\mu_{4}\right|= \pm 1$. The ω coupling to $N \bar{N}$ is predominantly electric, $\left|\mu_{2}-\mu_{4}\right|=0$, waile the p coupling to $N \bar{N}$ or $N \bar{\Delta}$ is predominantly magnetic, $\left|\mu_{2}-\mu_{4}\right|=1$. Since Su(3) preaicts $\gamma_{\omega \pi \gamma^{\prime}}>\gamma_{p \pi \gamma}$, and $\gamma_{\rho \eta_{\gamma}}>\gamma_{\omega \eta \gamma}$ we find the helicity flips shown in table 6 . Those with $|\Delta h|=1$ are the ones with dips, and the fact that this rule works so well must be regarded as good evidence for the strong cut model.

Table 6
Processes with and without dips at $t \approx \mathbf{- 0 . 6}$.

| Process | Dip? | Exchange | Δh |
| :--- | :--- | :--- | :---: | :---: |
| $\gamma \mathrm{~N} \rightarrow \pi^{0} \mathrm{~N}$ | yes | $\omega(\rho)$ | 1 |
| $\gamma \mathrm{~N} \rightarrow \eta \mathrm{~N}$ | no | $\rho(\omega)$ | 0,2 |
| $\gamma \mathrm{~N} \rightarrow \pi^{ \pm} \mathrm{N}$ | no | ρ | 0,2 |
| $\pi \mathrm{~N} \rightarrow \omega \mathrm{~N}$ | no | ρ | 0,2 |
| $\pi^{-\mathrm{p} \rightarrow 1 \mathrm{o}_{\mathrm{i}}}$ | yes | ρ | 1 |
| $\pi \mathrm{~N} \rightarrow \omega \Delta$ | no | ρ | 0,2 |
| $\pi \mathrm{~N} \rightarrow \pi \Delta$ | yes | ρ | 1 |
| $\pi N \rightarrow \rho \mathrm{~N}$ | yes | ω | 1 |

7.3. Hypercharge exchange processes

These may conveniently be divided, as in table 5 , into those processes where the K can be exchanged and mose where it can not. Where it can not the dominant trajectories should be the exchange degenerate (?) $\mathrm{K}^{*}, \mathrm{~K}^{* *}$. If the degeneracy were exact should expect a:1 equality of the moduli of the pairs of amplitudes such as ($\left.\pi^{+} p \rightarrow K^{0} \Lambda, K^{-} p \rightarrow \pi^{0} \Lambda\right),\left(\pi^{+} p \rightarrow K^{+} \Sigma^{+}, K^{-} p \rightarrow \pi^{-} \Sigma^{+}\right)$and $\left(K^{-} p \rightarrow \pi^{-} \Sigma^{+}(1385)\right.$, $\left.\pi^{+} p-K^{+} \Sigma^{+}(1385)\right)$. The agreement is in fact very poor [203]. The lack of equality can be blamed either on a splitting of the degeneracy [204], or on cuts [3158], but as with the charge exchange processes the effect seems to ioe in the wrong direction. A detailed fit of recent data including absorptive cuts and $S U(3)$ residues has been given in ref. [213]. The results are moderately good given the rather few parameters, but the data do not have any distinctive features (dips etc.) to constrain the fit strongly. Unfortunately there does not seem to be very good agreement with such little polarization cata as are available. One can hope that good polarization data will be available sum using the weak decay of the hyperon.

7.4. Pseudc scalar-meson exchange processes

The group of processes in table 5, in which the pion can be exchanged present a particular problem for Regge theory. The reason is that many of these reactions exhibit sharp forward spikes or dips (see table 7), which have a width $\approx m_{\pi}^{2}$ and so seem quite clearly to be associated with the pion, and yet an evasive pion is decoupled in the forward direction (see section 4.3). There are two possible solutions to this problem; either there is a pion conspiracy or there are very strong cuts.

Table 7
Processes with dips and spikes near $t=0$ due to π exchange.

The way in which the conspiracy works in photoproduction can be understood by Writing the differential cross section for small $|t|$ in terms of invariant amplitudes which are free of kinematical singularities and constraints [214], i.e.

$$
\begin{equation*}
\frac{\mathrm{do}}{\mathrm{~d} t} \propto\left\{\left[\left|\mathbf{A}_{1}\right|^{2}+\left|t \| \mathbf{A}_{4}\right|^{2}\right]+\left[\left|\mathbf{A}_{1}+t \mathrm{~A}_{2}\right|^{2}+\left|t \| \mathbf{A}_{3}\right|^{\mathbf{2}}\right]\right\} \tag{7.2}
\end{equation*}
$$

where the first term in square brackets correspond to natural parity, $\eta=1$, and the second to $\eta=-1$. At $t=0$ only A_{1} is finite and must contain equal contributions from both parities. The pion coupies oniy to A_{2} and so vanishes unless the residue takes the form a_{2} / t. However A_{2} can not be singular so we need a conspirator trajectory with a singular coupling $A_{2} \underset{t \rightarrow 0}{ }-a_{2} / t$. However the conspirator has even parity and so does not contribute to ($\mathrm{A}_{1}+t \mathrm{~A}_{2}$), so its contribution to A_{1} is finite, $a_{1}=a_{2}$. Hence the natural parity A_{1} amplitudes is finite at $t=0$ and has the same residue as the pion.

There were several successful fits of processes such as $\mathrm{pn}-\mathrm{np}, \overline{\mathrm{p}} \mathrm{n} \rightarrow \overline{\mathrm{n}} \mathrm{p}$, $\gamma p \rightarrow \pi^{+} n[71,72,216,217]$ making use of such a conspiracy. Since there is no known scalar particle with the pion mass it is generally assumed that the conspirator chooses nonse.ise, and so has vanishing coupling at $\alpha=0$, though a very flat trajectory is also a possibility. In order to get a fit a very rapid variation of the pion residue is required such that it vanishes for $t \approx-m_{\pi}^{2}$. This rather strange behaviour is found in all the three reactions above, and is confirm, d by FESR. Factorization them implies that all the $\pi \mathrm{N} \overline{\mathrm{N}}$ vertices must vanish at this point. (Some authors have connected this with PCAC.)

However it was shown by Le Bellac [73] that this sort of conspiracy 18 incompatible with factorization. Thus if we consider the t-charnel amplitudes for $\pi \rho \rightarrow \mathrm{N} \overline{\mathrm{N}}, A_{\frac{1}{2} \frac{1}{2}, 00}$ must vanish like $t^{\frac{1}{2}}$, and no conspiracy is possible. And by factorization

$$
\left(\beta_{\frac{11}{2}, 00}^{\pi \rho \rightarrow \mathrm{NN}}\right)^{2}=\beta_{00,00}^{\pi \rho \rightarrow \pi^{2} \rho} \beta_{\frac{1}{2} \frac{1}{2}, \frac{1}{2} \frac{1}{2}}^{\mathrm{NN}} \mathrm{~N} \overline{\mathrm{~N}}
$$

so if there is a conspiracy in $\mathrm{pn} \rightarrow \mathrm{np}$ and the latter residue is non-vanishing then $\beta_{00,00}^{\pi \rho \rightarrow \pi \rho}$ must vanish like t. If we then look at $\pi N-\rho \Delta$ we have

$$
\left(\beta_{\frac{1}{2} \frac{1}{2}, 00}^{\pi \rho \rightarrow \mathrm{N} \bar{\Delta}}\right)^{2}=\beta_{0000}^{\pi \rho \rightarrow \pi \rho}{ }_{\beta_{\frac{1}{2}}^{2}, \frac{1}{2} \frac{1}{2}}^{\mathrm{N} \overline{\mathrm{~L}} \rightarrow \mathrm{~N} \overline{4}}
$$

and since the residue on the left-hand side is kinematically finite it must have a dynamical zero (it can not have a $t^{\frac{1}{2}}$ singularity). This means that the forward $\pi N \rightarrow \rho \Delta$ cross section is predicted to vanish, and so is $N \bar{N} \rightarrow \Delta \bar{\Delta}$. There is some difficulty in testing these predictions bec tuse the Δ is a broad resonanc: (which 'fuzzes' the kinematics) but the evidence is definitely against it [218].

This argument leaves us with cuts as the only way of getting the forwari gataks. The rapid variation near $t=0$ is explained naturally by an interference between the smooth cut and the evasive pion pole, and no zero is needed in the pion residue. Cut models of $\gamma \mathrm{p} \rightarrow \pi^{+} \mathrm{n}, \pi \mathrm{N} \rightarrow \rho \mathrm{N}, \pi \mathrm{N} \rightarrow \rho \Delta, \mathrm{p} \overline{\mathrm{p}} \rightarrow \mathrm{nn}, \mathrm{np} \rightarrow \mathrm{pn}$ and $\mathrm{pp} \rightarrow \mathrm{n}^{++}$are available $[200,209,219,220]$, and all require very strong cuts, stronger than in most other processes; and in particular for $\gamma p \rightarrow \pi^{+} n$ the enhancement fartor λ is found to be 3.55 [209]. This makes one feel a bit uneasy, particularly as really all one is trying to do is to reproduce the forward peak obtained from a gauge invariant Born term [221],

$$
\begin{equation*}
\mathbf{A}_{2}=\frac{e g}{\left(s-m_{\mathbf{N}}^{2}\right)\left(t-m_{\pi}^{2}\right)} \tag{7.3}
\end{equation*}
$$

In fact as in $\gamma p \rightarrow \pi^{\circ}{ }^{0}$ there is some evidence in both $\gamma p \rightarrow \pi^{+} n$ and $\gamma p \rightarrow \pi^{-} \Delta^{++}$of an effective α approximately constant, $=0[178]$. It has been suggested that this may be a fixed J-plane pole [222], but unless something totally unexpected is happening
this is ruled out by unitarity (higher order electromagnetic corrections ensure that the trajectory has a siope $\alpha^{\prime}=0\left(\frac{1}{137}\right)$ at least). In any case such a fixed pole can not be correlated with the pion (a fixed l pole does not give a t-plane and so does not correspond to a particle) and is completely at invariance with vector dominance which relates the photoproduction amplitudes with those of purely hadronic reactions involving vactor mesons.

There is a further problem with the pion coupling to $\gamma p \rightarrow \pi^{+} n$, namely that if one appl: es the usual rules of Reggeization (chapters 2 and 4) there is no pion pole at all [223]. The reason for this is that the excharged pion is at the t-channel $\gamma \pi$ threshoid, and if one inserts the usual threshold behaviour the pole is cancelled by a kinematical factor. Since the pion manifestly is present it is essential to find some way of rectifying this. One possibility is simply to neglect the unitarity problem and invoke a fixed pole, but an alternative which seems preferable in some ways is to suppose that the $\gamma \pi$ threshold does not give rise to the usual threshold behaviour, perhaps because there is no non-relativistic limit for photon processes. Normally if one were to alter the threshold behaviour one would introduce a kinematical singularity, but in this case it does not happen because the sn . factor $\alpha_{\pi}(t)$ has just the form needed to cancel "he singularity at $t=m_{\pi}^{2}$. This problem only arises because of the dentity of the external and internil pions, and does not occur in any other process, except Compton scatteriag; which we sha?l discuss below.

The very good data on $\gamma p \rightarrow \pi^{+} n$ and $\gamma n \rightarrow \pi^{-}$p present an inieresting challenge to Regge theorists. As for neutral pion photoproduction, data with polarized photons make a complete experimental isospin and parity decomposition possible. If we assume that an evasive π plus πp cuts gives the extreme forward peak, one stil needs the ρ and A_{2} to explain the larger angle data. The π^{+} / π^{-}ratio fails rapidly from unity indicating the presence of the positive Gmprity ρ. Undike neutsad photoproduction there is no dip at $t=-0.6$ so one must assume that the dip is filled by a wrong-signature fixed pole and cuts. Both the Michigan and Argonne models seem to be able to reproduce this effect.

In $\gamma p \rightarrow \pi^{-} \Delta^{++} d \sigma / \mathrm{d} t$ is of the same magnitude as $\gamma \mathrm{p} \rightarrow \pi^{+} \mathrm{n}$ at $t=0$, then rises 10 a large maximum at $t \approx-m_{\pi}^{2}$, after which descends to follow the $\gamma p-\pi^{+} n$ dai a at larger $|t|$. Again a gauge invariant Born term can give a gond fit near the fou ward direction [224]. A Regge pole model with a pion conspiracy plus the ρ andi an . s possible, but since the conspiracy is now ruled out one must cxpect strong cuts to be present. The related processes $\gamma p \rightarrow \pi^{+} \Delta^{0}, \gamma n \rightarrow \pi^{+} \Delta^{-}$, and $\gamma n \rightarrow \pi^{-} \Delta^{+}$have also been studied experimentally, and seem to indicate the need for an $I=2$ exchange as well as the ρ and A_{2} [224]. If this is confirmed it cculd be evidence for a $\rho-\rho$ cut. If one is to have any hope of disentangling the pole and cut contributions one needs to look at several processes simultaneously and use the extra constraint provided by factorization. So far this aas oniy been attempted on any scale for these processes with purely pole models (e.g. refs. [225, 226]).

In general whether one gets a peak or a dip from a π exchange reaction depends on whether the helicity amplitude which dominates has zero helicity flip or not. One can account for the results of table 7 by supposing that the π coupling to say particles 1 and 3 favours the minimum possible helicity change [227], i.e. $\min \left|\lambda_{1}-\lambda_{3}\right|$, though of course for the NN vertex we must have $\lambda_{1}-\lambda_{3} \mid=1$. Thus in $\gamma p-\pi^{-}$p there is one unit of helicity flip in both the $\gamma \pi \pi$ and NNT vertices, and $\Delta h \equiv\left|\lambda_{1}-\lambda_{3}\right|-\left|\lambda_{2}-\lambda_{4}\right|=0$ and a forward yeak results. On the other hand for $\gamma p \rightarrow \pi^{-} A^{++}$there is one unit of flip at the $\gamma \pi$ end but none at the $\overline{\mathrm{N}} \Delta$ end so we have
$\Delta k=1$ and s: narrow dip results, while for $\pi p \rightarrow \rho N$ the meson vertex conserves helicity and the baryon one does not, so $\Delta h=1$ and there is a forward dip.

Most of the corresponding K exchange processes listed in the table do not have good enough data for convincing fits to be pussible. The photoproduction processes $\gamma p \rightarrow K^{+} \Lambda$ and $\gamma p-K^{+} \Sigma^{0}$ can be fitted with a K conspiracy similar to that for the pion [71], but because the K pole is so muck further from the forward direction there is a turward dip rather than the peak of pion exchange processes. Again cuts can be invoked instead of the conspiracy [228].

The $\gamma_{\mathrm{KN} \Lambda}$ coupling coems to be much larger \dot{L} : $\mathrm{n} \gamma_{\mathrm{KNN} \Sigma}$, and new data on $\sim \mathrm{n} \rightarrow \mathrm{K}^{+} \Sigma^{-}$indicates the need for $I=\frac{3}{2}$ exchringes as well as $I=\frac{1}{2}$. This could be a ρK^{*} cut [224]. The Λ^{*} and Σ^{*} photoproduction proce:ses are very similar. In general the strange particle couplings seem to be much s maller relative to the nonstrange ones than one would expect from $\operatorname{SU}(3)$ [224]. in $p \bar{p} \rightarrow \Lambda \bar{\Lambda}$ some forward K contribution seems to be needed, which again could in principle be produced by a conspiring pole or a cut [229].

7.5. Baryon exchange processes

- Near the backward direction of meson-nucleon scattering processes we expect the u-channel baryon exchanges to dominate, so backward scatiering data can give us insight into a quite different set of trajectories. This is particularly useful as we already have quite a lot of information about these trajectories for $u>0$ from figs. 8-12.

There is the complisation that we must expect a $\Lambda=\frac{1}{2}$ conspiracy between opposite parity trajactories, so for pseudoscalar-meson-baryon scattering the differential cross section is
$\frac{\mathrm{d} \sigma}{\mathrm{d} u}=\frac{1}{64 \pi^{2} q_{S} \sqrt{s}}\left\{\left|\beta^{+}\left(\frac{1+\sigma \mathrm{e}^{-\mathrm{i} \pi \alpha^{+}-\frac{1}{2}}}{\cos \pi \alpha^{+}}\right)\left(\frac{s}{s_{\mathrm{O}}}\right)^{\alpha^{+-\frac{1}{2}}}\right|^{2}\right.$

$$
\begin{equation*}
\left.+\left|\beta^{-}\left(\frac{1+\mathrm{e}^{-\mathrm{i} \pi \alpha^{-}-\frac{1}{2}}}{\cos \pi \alpha^{-}}\right)\left(\frac{s}{s_{0}}\right)^{\alpha^{--\frac{1}{2}}}\right|^{2}\right\} \tag{7.4}
\end{equation*}
$$

where \pm correspond to nitural and unnaturai parity poles, which satisfy (4.88). Thus at fixed u we have,

$$
\begin{equation*}
\frac{\mathrm{d} \sigma}{\mathrm{~d} u}=f(u)\left(\frac{s}{s_{\mathrm{O}}}\right)^{\alpha+(\sqrt{u})+\Gamma(\sqrt{u})-2} \tag{7.5}
\end{equation*}
$$

and any odd $u^{\frac{1}{2}}$ terms in a do not contribute to t e amplitude (see (3.27)). The residues β must take the form $\left[\left(\alpha-\frac{1}{2}\right)!\right]^{-1}$ to kill the poles at $\alpha=-\frac{1}{2},-\frac{3}{2} \ldots$ provided there are no fixed poles at the wrong-signature nonsense points. The $\pi^{ \pm} \mathrm{p}$ backward data are shown in fig. A5. We expect $\mathrm{N}_{\alpha}, \mathrm{F}_{\gamma}$ and A_{0} exchanges, and the dip in $n^{\dagger} p$ at $u=-0.15$ can be explained by a nonsense zero where $\alpha_{N}=-\frac{1}{2}$, provided the N_{γ} contribution is small [230]. If the N_{γ} were exchange degenerate with the N_{α} the dip would be completely filled in. The lack of a corresponding dip in the ${ }^{-1} \mathrm{p}-\mathrm{p}^{m^{-}}$ data is explained by the dominance of the Δ_{8} contribution. The trajectories needed to fit agree well with those of figs. 8 and 9 , but a dip is to be expected in $\pi^{-} p$ at $\alpha_{\Delta}=-\frac{3}{2}$, i.e. $u \approx-1.9 \mathrm{GeV}^{2}$. This dip is not observed, but its absence can be explained by a fixed pole, a cut, or iny the t ajectory bending so that it does not pass through $-\frac{3}{2}$ within the region of a fisted [230, 231]. The residues are given the form

Fig. 45. The differential cross sections for $\pi^{ \pm} p \rightarrow p \pi^{ \pm}$compared with the Regge pole fit of ref. [230].

$$
\begin{equation*}
\beta(u)=\left[a(\sqrt{u}+M)+b\left(u-M^{2}\right)\right] e^{c u} \frac{1}{\left(c-\frac{1}{2}\right)!} \tag{7.5}
\end{equation*}
$$

which vanishes at $\sqrt{ } u=-M$, where M is the mass c the excharged particle $(\mathbb{N}$: in order to kill the first particle on the parity doublet trajectory. The result trajectories ar: $\alpha_{N}=-0.38+0.91 u$ and $\alpha_{\Delta}=0.21+0.84 u$. The N_{u} residue functis extrapolated to the N pole gives good agreement with the $\pi N \bar{N}$ coupling constant, but the Δ_{8} residue disagrees with the Δ width, being much too small. This suggests that a more complex parameterization is called for. In fact if the Δ cheoses nonsense at $\alpha_{\Delta}=\frac{1}{2}(u \approx 0.35)$ and so changes sign there, the extrapolation is much improved [232].

II we next turn our attention to the photoproduction processes $\gamma \mathrm{p}-\mathrm{p} \pi^{\circ}$ and $\gamma \mathrm{p} \rightarrow \mathrm{n} \pi^{+}$we find that there is no corresponding dip at $\alpha_{\mathrm{N}}=-\frac{1}{2}$, and that the ratio of $\mathrm{p} \pi^{0}$ to $\mathrm{n} \pi^{+}$is u dependent so the $I=\frac{1}{2}$ and $I=\frac{3}{2}$ contributions must have different u dependence. In a pure poie fit it is necessary to incorporate the N_{γ} legenerate: with N_{α} in order to fill the dip [233]. This is very embarassing since the two tram jectories are certainly not degenerate for $u>0$ (see fig. 8), and it is hard to set why N_{γ} should contribute strongly he: a , and not at all in backward $\pi \mathrm{N}$. Thi cess also shows little shrinkage, in iact it is consistent with a fixed power behariour at $\alpha=-0.5[178]$. This can be explained away by a Δ_{δ} contribution which is small at $u=0$ and becomes large at larger $|u|$, however.

The N_{α} and N_{γ} trajectories also contribute to backward pp- $\pi^{+} \mathrm{d}$ and the (su far rather poor) data show little structure, and so are compatible with exchange degenexacy [234]. If the couplings are degenerate here then they must also be in πN by factorization, and it becomes impossible to explain the dip by a nonsense zern.

The obvious way round this problem is to assume that where there is dip struc.
ture it is due to pole cut interference rather than the vanishing of the poles. A comprehensive fif of all these processes with strong cuts has been renorted in ref. [235]. The fit is fairly satisfactory given the rather few parameters, but, as wouid expected, the discrepancy is worst for the $\pi N \rightarrow N \pi$ processes which are the nes best arccunteci a i by poles alone. On the other hand the Δ width comes out right. A recent comparison [236] of all possible Regge pole and/cr cut models for $\pi \mathrm{N} \rightarrow \mathrm{N} \pi$ concludes that all can be made to work with equal case, and there is no reason to favour any.

Drago et al. [237] have used $\mathrm{K} \mathrm{n}_{\mathrm{n}}-\Lambda \pi^{-}$, which also has a dip at $u=-0.2$, to try and distinguish between the Argonn ' and Michigan cut models, but both seem to be equally satislactory. If pole dominauce is accepted the N_{α} exchange in $\pi \mathrm{N} \rightarrow \mathrm{N} \pi$ and $\mathrm{K}^{-} \mathrm{n} \rightarrow \mathrm{A}^{-}$enables one to determine the ratio of the $\pi \mathrm{NN}$ and $\mathrm{KN} \Lambda$ coupling constants by extrapolating the fits to the pole. A recent determination [238] gives $\gamma_{\mathrm{KN}} \Lambda=15.5 \pm 5$, which is within the range predicted by $\mathrm{SU}(3)$ (unlike some other estimates from dispersion relations [239]).

Of the strange baryon exchange processee $\mathrm{K}^{+} \mathrm{p} \rightarrow \mathrm{pK} \mathrm{K}^{+}$h3s no dip structure, a fact which can readily be explained [240] by $\Lambda_{\alpha} \Lambda_{\gamma}$ exchance degeneracy with $\alpha=-0.7+0.96 u$, while $\pi^{-} p \rightarrow \Lambda K^{\circ}$ requires Σ exchanges, and a fit with Σ_{α} and Σ_{γ} trajectories which are degenerate in a (see fig. 38) but not in residue has been made [241]. It accounts well for the polarization. One should expect an important contribution from the higher lying $\Sigma_{\beta}, \Sigma_{\delta}$ as well, however.

7.6. Elastic scattering

There is of course more data on elastic scaittering tian other processes but there are also more problems, mainly oecause of the need for the Pomeranchon wheh is not necessarily associated with any known pa cicle, but also because of the number of lower lying trajectories which contribute.

Many good fits using just poles have been achieved for all the processes in table 5 , as well as some which include cuts. In recent years it has become common to combine both high and low energy data by using FESE techniques, (see section 6.2). However all of the older fits are in substantial disagreement with the new high energy data on $\pi^{-} p, \pi^{-} n\left(=\pi^{+} p\right), K^{-} p$ and $\bar{p} p$ cross sections obtained at Serpukhov. This is not really surprising as the new data do not extrapolate in any simple way from the old. Since the Serpukhov data must be reagrded as preliminary, in the sense that there is as yet no confirmation from another experiment, we shall first discuss the pre-Serpukhov fits, and then go on to some of the attempts which have been made to understand the newer data.

Data on total cross sections are shown in fig. 46. The signs of the contriw.ting trajectories in table 5 depend partly on the fact that particles of even charge conjugation, P, f, A_{2}, contribute with the same sign to $1+2$ and $1+\overline{2}$ scattering (2 is the antiparticle of ? while those of odd C, i.e. ρ, ω, contribute oppositely. Similarly the isovector ρ and A_{2} contributions change sign under $\pi^{+} \rightarrow \pi^{-}, \mathrm{K}^{+} \rightarrow \mathrm{K}^{-}$or $\mathrm{p} \rightarrow \mathrm{n}$, while the isoscalars are unchanged. The absolute signs within a given group of proceroes are not determined, however. If we uise the signs given in the table, and we have exact exchange degeneracy i.e. $\rho=\omega=\mathrm{f}=\mathrm{A}_{2}$ then the exotic channels (see section 6.2) $\mathrm{K}^{+} \mathrm{p}$, and pp are given solely by the P . This accounts for the flatness of their cross sections compared to the other processes. But asymptotically all the total cross sections should be controlled by the \mathbf{P} so we predict $\sigma\left(\pi^{+} p\right)=$ $\left.\sigma\left(\pi^{-} p\right), \Sigma^{+} p\right)=\sigma\left(K^{-} p\right)$ and $\left.\sigma^{\prime} p \bar{p}\right)=\sigma(p p)=\sigma(p n)=\sigma(\bar{p} n)$ as $s \rightarrow \infty$, in accordance with the fomeranchuk theorem (discussed below).

Similarly if we take the differences $\Delta(\pi p) \equiv \sigma\left(\pi^{-} p\right)-\sigma\left(\pi^{+} p\right), \Delta\left(K^{+} p\right)-\Delta\left(K^{+} n\right)=$

Fig. 46. The total cross sections below Serpukhov energies, from ref. [15].
$\sigma\left(\mathbf{K}^{(} \mathrm{p}\right)-\sigma\left(\mathbf{K}^{+} \mathrm{p}\right)-\sigma\left(\mathbf{K}^{+} \mathrm{n}\right)+\sigma\left(\mathbf{K}^{-} \mathrm{n}\right)$, and $\Delta(\mathrm{pr})-\Delta(\mathrm{pn}) \equiv \sigma(\mathrm{pp})-\sigma(\mathrm{p} p)-\sigma(\mathrm{pn})+\sigma(\overline{\mathrm{p}} \mathrm{n})$, these combinations are given solely by the ρ. The very small difference between $\sigma(\rho p)$ and $\sigma(\mathrm{pn})$ for example indicates the smallness of the $\rho \mathrm{NN}$ non-flip coupling.

The charge exchange processes are related to the elastic amplitudes by the is $0-$ spin relations

$$
\begin{align*}
\sqrt{2} A\left(\pi^{-} \mathrm{p}-\pi^{0} \mathrm{n}\right) & =A\left(\pi^{+} \mathrm{p}\right)-A\left(\pi^{-} \mathrm{n}\right) \\
A\left(\mathrm{~K}^{-} \mathrm{p}-\overline{\mathrm{K}}^{\circ} \mathrm{n}\right) & =A\left(\mathrm{~K}^{-} \mathrm{p}\right)-A\left(\mathrm{~K}^{-} \mathrm{n}\right) \\
A\left(\mathrm{~K}^{+} \mathrm{n} \rightarrow \mathrm{~K} \mathrm{p}\right) & =A\left(\mathrm{~K}^{+} \mathrm{p}\right)-4\left(\overline{\mathrm{n}}^{-} \mathrm{n}\right) \\
A(\overline{\mathrm{p}}-\overline{\mathrm{n}} \mathrm{n}) & =A(\mathrm{p} \overline{\mathrm{p}})-A(\overline{\mathrm{p} n}) \\
A(\mathrm{p} \mathrm{n}-\mathrm{np}) & =A(\mathrm{pp})-A(\mathrm{pn}) \tag{7.7}
\end{align*}
$$

so it is useful to have fitted the charge exchange processes first in or er to pin down the ρ and A_{2} parameters before trying the elastic amplitudes.

Some recent pole fits have been made [$189,242,243]$ using secondary $f^{\prime}, \rho^{\prime}$ and ω^{\prime} trajectories in addition to those of table 5 . They are very impressive consideret purely as descriptions of the data. In particular the structure of che pelarizaticis are very well accounted for. The trajectory parameters [189] are ${a_{\hat{p}}}_{2}=1+0.37 t, \alpha_{\hat{p}}=\alpha_{\hat{i}}=0.56+0.9 t_{;} \alpha_{\hat{p}}=\alpha_{\mathrm{i}}=t$. The ρ chor ses sense ind its pinfilp residue vanishes at $t=-0.6$, and the f chooses nonsens: so both its residues vanish at this point. The sf condary trajectories are needed to fit the FESR, and the ρ^{\prime} is also required to it the charge exchange polarization. The cross-over phenomenon referred to in s, ition 2 (i.e. the fact that

$$
\left[\frac{\mathrm{d} \sigma}{\mathrm{~d} t}\left(\pi^{-} \mathrm{p}\right)-\frac{\mathrm{d} \sigma}{\mathrm{~d} t}\left(\pi^{+} \mathrm{p}\right)\right]
$$

changes sign at $t \approx-0.15 \mathrm{GeV}^{2}$) requires a zerc of the ρ residue in the non-flip amplitude. KN and NN show the same cross-over, and a corresponding zero is required in the ω residue at $t=-0.15$. Such a zero does not occur in other related processes such as $\pi \eta \rightarrow \rho N$ a $d \gamma p \rightarrow \pi^{0} \mathrm{p}$, however, as it should by factorization [244], so this procedure can not be regarded as satisfactory. But provided one does not mind the snall P slope this cross-over zero is really the only problem with purely pole fits.

Various attempts have been maje to test the hypothesis that these processes can be fitted by a sum of a fliti P plus the direct channel poles, as required by duality [$158,154,245$]. Aoderately good fits can be obtained, but the ambiguities in the resonance contributions make them unconvincing, at least to this author. There have also been generally rather unsuccessful pttempts to fit $\pi \mathrm{N}$ and KN and NN with Veneziano models [169, 246-248].

If one invokes cuts one can explain, at least in principle, both the cross-over zero (by the usual pole-cut interference) and why the shrinkage is less than would be expected from a \mathbf{P} of slope $\approx 1 \mathrm{GeV}^{-2}$. Early fits were made with cuts generated by a flat P (the so called hydrid model) [249-251] but more recently a P of normal slope has been used [252]. The \bar{F} can not be the only vacuum trajectory, however, because the change of slope of $\mathrm{d} \sigma / \mathrm{d} t$ from the steepness of the pole to the less steep cut should occur at lower t as the energy increases whereas in fact the opposite occurs [178]. To explain this one still needs include the secondary f trajectory etc. The position of the cross-over zero is hard to explain on the weak cut (Argonne) model (see section 5.6). The ω pole gives a zero at $t \approx-0.6$ and it is not possible for the cut to move i^{+}to $t \approx-0.15$ [252]. The Michigan strong cut model has less trouble [116].

Fig. 47. The total cross sections at high energies, from rei. [138].

As we have mantioned all the earlier fits failed to predict the Berpukhov data on ${ }^{n} \mathrm{~N}$ and KN scattering shown in fig. 47. It is easy to understand why if one notes the discontinuity of slgee between the old data $<30 \mathrm{GeV}$ and the now cata, $30-70 \mathrm{GeV}$. What is worse the new $K p$ data appears to be running parallel to the Kp data (still ony available at low energy) instead of meeting it as the Pomeranchuk theorem [253], and all simple Regge pole and cut models, require. Similarly the $\pi^{\circ} p$ data are not approaching those for π^{+}p. However, the latter are deduced from πa^{d} scattering by Clauber theory (using $\pi^{\prime \prime} n \equiv \pi^{+} p$) and so are in scme doubt.

As usual there has been a wide variety of explanations suggested. They fall into three classes. The first is to suppose that the errors in the data are rather larger than claimed by the experimenters, in which case Regge poles (with slightly different parameters from the previous ones) stinl fit [254]. Or one may accept the datia but suppose that despite fig. 48 the $\pi^{ \pm} p$ and $K^{ \pm} p$ data will eventually meet at x. In this case the cross sections must rise again above 70 GeV . A simple way to obtain such a rising behaviour is to use cuts [255], since we have seen (section 5.6) that the PP cut is negative and decreases logarithmically to leave a dominant P pole. An example of such a fit is shown in fig. 48, and we see that very large asymptotic cros: sections are predicted.

Fig. 48. A fit to the Serpukhov data with Regge cuts in which the asymptotic cro secrans are predicted to be well above the currently measurod values, from ref. [255].

The third possibility is that the Pomeranchuk theorem [253] itself is false. Thi: states that the particle and anti-particle cross sections on a given target must become equal at high energy, and its proof depends on assuming that the empltades become imaginary at high energy, i.e.

$$
\operatorname{Im} A / \operatorname{Re} A \sin ^{\infty}
$$

If instead they become dominantly real the theorem breaks down and the particle and antimpartic! cross sections can be different [250, 25\%]. An athernative dernas tion for aN scattering is to use (7.7) and require the vanishing sf the inelastic charge exchange process, but this does not work for KN etc.

It is not -ossible to construct Regge pole models which viol. te this theorem.
(Indeed it was just because it does satisty che Pomeranchuk theorem that the Pomerarchon received its name [55].; The reason for this is that in order to get a constani asymptotic behaviour at ∞ we need $\alpha(0)=1$. But the difference $\left[A\left(\mathrm{~K}^{+} \mathrm{p}\right)-A\left(K^{-} \mathrm{p}\right)\right]$ (say) ia given by an odd signature trajectory (by crossing symmetry) and an odd sigratiure trajectoxy with $\alpha=1$ is purely real and so does not coniribute to the total cross section. Cuts are no good cither because they have the same signature properties and vanish asymptoticaily.

T'wo ways of viola ing the Pomeranchuk theorem which have been suggested are to introduce J-plane dipoles [258] or other more complicated singularities [259] which can give a finite contribution to the imaginary part, or to make the odd sir: nature trajectory complex [260], which produces an oscillating cross section. The firs: is unpleasant because the singularity has no obvious explanation as a particle exchange effect, and tends to produce logarithmically increasing cross sections, while the second has even less intuitive meaning.

The pp differential cross sections continue to shrink at high energies and are consistent with a P slope of about $0.5 \mathrm{GeV}^{-2}$ for $-0.1<t<0$ [261]. This revives the idea that the P is associated with the f particle, which would require a trajectory $\alpha_{P}=1+0.64 t$. In this case the P^{\prime} trajectory, presumably contains the $f^{\prime}(1514)$. It has been pointed out [262] that the f seems to have zero NNि flip coupling, which if rue for the whole trajectory would explain why the $\pi \mathrm{N}$ helicity flip amplitudes seem to be very small. However cuts generated by a \mathbf{P} with slope 1 :an reproduce the efiective slope of $\frac{1}{2}$ just as well [263].

ANI In bil we find that the results of the first Serpukhov experiments are so un* expected that one is unwilling to put too much weight on them until they are independently confirmed. It will be a very unfortunate coincidence if nature has chosen to change the slopes of the total cross sections just at the maximum energy of the previous generation of accelerators, as fig. 49 suggests.

The final elastic process in our list, Compton scattering, presents a particular cifficulty for Regge theory [214]. One expects of course a constant cross section controlled by the P , but because of the helicity of the photon $\left(\lambda_{\gamma}= \pm 1\right) \alpha=1$ is a wrong-signature nonsense point. Hence the P coupling would have to vanish at $\alpha=1$, i.e. $i=0$, if there were not a wrong-signature fixed pole [265]. But it is rather peculiar that Compton scattering should be controlled by the third double spectral function in this way. An alternative way out of the dilemma [c? 6] is to note that $t=0$ is the $\gamma \gamma$ threshold and if one is willing to alter the threshoi: teheriour on the grounds that the rioton has no non-relativistic limit (just like the g threshoid in $\gamma p \rightarrow \pi^{+} n$ discussec above) the nonsense decoupling factor ($\alpha(t)-1$) can rensace the required kinematical zero and leave a finite coupling. Also because this process has two clectromagnetic vertices the uswal theorem arainst the presence of a fixed pole (which still applies in photoproduction) breaks down [260]. Fits to the re total crogs section data combined with fispersion relations auggest the presence of a real part unconnecteú with the Regge terms, and of magnitude roughly equal to the Thomps on limit $\left(=-1 / 137 m_{\mathrm{N}}\right)$ [267]. This could ie interpeciod as a fixed pole at $J=0$.

7.7. Quasi-elastic scattering

In view of our uncertainty about the nature of the P required in eiastic scatterw ing, it is important to try and lest whether quasi-elastic processes (i.e. processes which are inelastic but involve no exchange of quantum numbers) ara also controlled by this trajectory, and hence have constant cross sections.

In fig. 49 we show the cross sections $: \times \pi p \rightarrow \pi N^{*}$, where the $N^{* \prime} s$ are various $l=\frac{1}{2}$ nucleon resonances [268]. The data are not particularly good, but cleariy indicate constancy at high energy. This is to be contrasted with the decline of the cross sections for production of $I=\frac{3}{2} \mathrm{~N}^{*}$ resonances which are controlled by the ρ

Fig. 49. The total cross sections for the production of so:..e N^{*} rasonances, from :ef. [2es].

The vector-meson photoproduction processes also provide a nũfu: test, and again the cross sections seem to be compatible with constancy, at lesst for the ρ ad ω [224]. There is a large slope in the ω cuoss section at low energies which can be attributed to π-exchange since one exp: ats from $S U(3)$ that the $4 \pi \gamma$ coupling will be much iarger thair the $\rho \pi \gamma$. It has recently been pointed out by 3arger and Cline [269] that the reaction $\gamma p \rightarrow \phi p$ may offer a particularly good chance of oburving the P trajectory unencumbered by the P^{\prime} (or f ?; which comp:icates the analysis of other reactions. The reason for this is that because of the mixing angle (section 6.4) the ϕ is decounled from non-strange hadrons (it is made up of $\lambda \bar{\lambda}$ quarkg) so that in $\phi \mathrm{N} \rightarrow \phi \mathrm{N}$ (in which only $I=0$ states can be exchanged) the ϕ should decouple from the \mathcal{F} leaving jusi \mathcal{P} exchatge. According to the vector dominance hynothesis

$$
\frac{d \sigma}{d t}(\gamma p-\phi p)=\frac{e^{2}}{4 \gamma_{\phi}^{2}} \frac{d v}{d t}\left(\phi_{t r} p-\phi p\right)
$$

Whei $3 \phi_{\mathrm{tr}}$ mer is a transverseiy polarized ϕ meson, and γ_{ϕ} is the $\phi \gamma$ coupling. The rather ; vor data on $\gamma p \rightarrow \phi$ p sufgest a F slope of ahout $\frac{1}{2}$, but because of the possibili' y that one is really observing a sei of multiple P cut.s titis only represents a ower bound to the slop $\%$. In fact z cut analysis suggests $\alpha_{\mathrm{p}}^{\circ} \Rightarrow 1 \mathrm{GeV}^{2}$ [270]. A p with such a large slope is rathe. difficcilt for the duelity hypothesis be-
cause it will produce Schmid loops in exotic cnannels, and so requires iic introduct on of exotic states. Also if the P is identifed whin the f, the $\rho \mathrm{fA}_{2}$ " degeneracy, whion is essential for pole duality (see section 6.4), is destrojeni.

7.8. No single pastirle exrhorge possible

A! impuriant test of \therefore ie consistency of our theory is that thuse processes where no known trajectory can be exchanged should not give rise to prominent foz ward or backward peaks. Some xamples are given in table 5, none of which have any sifnificant structure (in fant several are too small to measure). This confirms the assoriation of peaks witu particle exchanges, and once that is gianted, shows that there are ro strongly coupled exotic trajectoriss in the channels considered. Thero should, however, be contributions from multiple trajectory exchanges, and the two Reggeon cuts which one wound expect to dominate (given the rules of section 5.6) are shown in the table. A determination of the energy dependence and magnitudes of these amplitudes could provide a good deal of information about these cuts. Unfortunately experimenis on $\pi^{-} p-\bar{n}^{-1}+$ (missing mass) show no amplitude at an [271], while $K^{-} p \rightarrow p K$ shows a strons decrease $\sim s^{-9}$ ot lom energies (the resonance region) [P72]. There should be $\because \%{ }^{*} 4$ cut with an s^{-3} depeadence but this is not seen. A mociel of this cut has been suggested [2\%3], but it is well below the beunu's of the present high energy experiments. It must be hoped that much beiter data on this sont ui process will be available before ton : viug.

7.9. Factorizetion

The question of the factorization of Regge poles deserves a more general mention.

We have "sed arguments based on factorization to decide against the existence of a cross-over zero in the ρ and ω trajectortes at $t \sim-0.15$, and against the conspiracy explaiatior of n dominated reactions. But one ought also to ask whether there is any direct experimental evidence in favour of factorization. In fact it is very hard to obtain because one can not do the necessary experiments; e.g. one can lcok at $\pi \mathrm{N}$ and NN scattering but rot $\pi \pi$. One fairly dirert test [274] for the p is to test the equality

$$
\frac{\frac{d \sigma}{d t}(\mathrm{NN}-\mathrm{NN})}{\frac{d \sigma}{d t^{t}}(\pi \mathrm{~N}-\pi \mathrm{N})}=\frac{\frac{d \sigma}{d t}\left(\mathrm{NN}-\mathrm{NN}^{*}\right)}{\frac{d \sigma}{d t}\left(\pi \mathrm{~N}-\pi \mathrm{N}^{*}\right)}
$$

where the N^{*} is any $I=\frac{1}{2}$ nucleon resonance. The left-hand side is 2.7 at $t=0$ and the right-hand side is 3.2 and 2.9 for the $N^{*}(1400)$ and $N^{*}(1688)$ respectively (with errors of ± 0.6 on each). This is some, but not very strong, evidence for f , zation. Bari anv Razini [275] have looked at the ratio

$$
\frac{\mathrm{d} \sigma}{\mathrm{~d} i}(\pi \mathrm{~N} \rightarrow \pi \mathrm{~N}) \frac{\mathrm{d} c}{\mathrm{~d} t}(\mathrm{NN}-\pi \mathrm{NN})
$$

for a range of $\pi \mathrm{N}$ final-state energies and find good agreement with factorication aespite the fact that there will be $I=\frac{3}{2}$ contamination (dropping wha increasing energy of course).

The absence of mure direct tests of factorization permits the (? fleeting) thought that pernaps all trajectories are multipie, as suggested by the split A_{2} und multi-particie Veizeziano models [276]. A srabll splitting can explain sevral
 nun 2) and the cross-over zero) sut not he $:$ cunsparacy. Howeve:, since we know
 atio. e of faciortzation on them.

CHATTEP:

SONE CONLLUSIONS

The discussions of the preceding chapters should be suifiricht io vindicate the clatm made in the introduction, that Regge theory provides a most surecssini apgroach to high-energy scatiering, and that I-plane annlusis in an essentia? tool for understanding sirong interactions.

Despite the many amigigitics waye heen able so draw some reasonably firm nsiaiustons about Regge poles. Most trajectories seem to be essentinlly siraight, parallel lines, with a slope about $1 \mathrm{GeV}^{-2}$, and niary of tie dominant trajecturies are approximately exchange-degenerate. We have found no evidence that trajesetories take part in conspiracies, but all seem to have Toller umber $\therefore \therefore i$. Tinere is a protiem with regard to the baryons in that vine does not find approximately degenerate pairs of onnocitic parity trajectories. This is inrompatible with the strathiness of the baryon trajectories unless there is some mechanisn to make the residues vanis., for every integer on the odd parity side: or some singulatity like the Carlitz-Kislinger cut (discussed in section 5.7) is invoked. There is very little evidence for daughter trajectorics, and it seems likely that if they exist they stay h the left-half, piane. serving merely to preserve analyticity at $t=0$, and dono prome physica particles. Their status may oe siminat to that of the maty unimortant low-lying rajectories it, potential scatterng, such to those which or cur at thresholds at $i=-\frac{1}{2},-\frac{3}{2} \ldots$.

The mature of the pomerancion is still uncortai. The fact that the for ontinte to shrink at Serpukhov energies requires a moving ainguherity, wind we wh: know of a mechanism which can protuce cuts with $\alpha_{C}(0)=1$ if there are nut also poles with $\alpha(\hat{0})=1$; but whether the .' has the slope indicated by the pp data (≈ 0.5) and so perhaps passes through the f, or has a similar slope to other trajectorias (≈ 1) but is partially masked by the cuts, remains unclear.

We have found no evidence to fixed f-plane singularities farart from the nonsense urong-signature fived r ? $e s$, except possibly in soine photoprciuction proceses, hut fex here the Eviunce seems to be against them at larger

Polfs, alone are not abie to fit the dnta, however, because in particular the ross-over zero and the pion conspiracy at incompatible with factorization, and to explain these effects we must use cuts. We know on theoreticai grounds that cut - are needed to explat bow the Griboy-Pomeranchuk fixed poles are shicldod from the unitarity equation, but unfortunately we do not have a reliable modul to calculate ther magnitudes because they depend (at least in Feynman diagram models on continuing the Reggeon couplings off the mass sheil. The various on-mass-shell prescriptions, such as the ausubtire and exonal models, do not haw any very compelling theoretical backing; indeed both seem to involve planar dia tram which should not give rise to cuts.

Thr absence of a reliable method of esti.. ang cit magnituries is the principul problr: of Regge phenoménology at present. It has not so far oeen possible to dis tinguish experimentally bet wer. the ao cailed strong (or Michigan) cut ran in
which pole cut interferenca is responsible for the various dips in the differential cross sections, and the weak (or Argenne) model in which the poles themselven have zeros at wrong-signaturo nonsense points, and the cuts sorve merely to move or fill in these zeros. But is seems likely that better data, particularly on polarizations may enable a choice te be made. It must be born in mind. however, that since neither mods! has a very sound theoretical status it is quite possibie that neither will be found to work in all processes. At present $\gamma \boldsymbol{p}-\pi+n$ seems to require very s rong cuts (even by tha standards of the Michigan model) while $\pi^{-} p-\pi^{o_{n}}$ would be quite happy with almost negligtble ones.

The plea for better data is of course perrennial among theorists, but so much has been learned hy fitting two body processes that one feels justified is asking for more data on resonance production processes so that tests of factorization can be made; more high energy polai - xtion measurements so that the spin structure of amplicudes can be determined with greater confidence; and of courge the more data there i: on any process at large s and t the better, since the difieront pole and cut models become more readily distinguishable at higher energles and wider angles. It seems that more is likely to be learned in the near future from quasi two-body prcturtion experiments than from more complex final states which are so much ha er to analyse.

Drial mocidls, which have enjoyed such a vogue in recent years, pose scme very difficult theoretical problems. We have scen in chapter 6 that the ideal duai whrld where every amplitude is saturated by na.:row resonances which fali into non-ex. otic SU(3) multiplets with exchange degenerate trajectories bears mir q partial,
 rections for unitarity, $S U(3)$ breaking, et 2. , the whole edifice seems to rrvi, ${ }^{\text {a }}$, The model becomes too imprecise iu test because there are so many ambiguities in determining the existence and magnitude of inelastic resonances, and in how to continue a Regge pole term to low energiss. One can not decide what is meant sy 'broken duality' until one has a clear idea of what exact duality means (if anyt ing) outside a werld of narrow resonances. It seems to the author that little if any progress can be expected urless and until some fairly prectse pieseription can be giver for constructing dual models with resonances of fintte width, so that there is a definite prescription for continuing the amplitude onto the unphysi:al sheets to the poles. The Veneziano models provides no help in this, and not surprisiny'y it does not fit two-body processes at all well.

Most of the problems really stem from the sact that duality is to v.true to be a fundainental principle itself, and yet it is hard te see from what more oavi: concept an approximate duality could derive. At the moment it is a purely ad noc notion. Probably the chief current interest in dual models is that they provide a convenient framework for constructing many-particle amplitudes which have the required poles and multi-Regge behaviour, rather than in duality itself.

Though Regge phenomenology has made great progress in the last fow years the same can not be said for our understanding of the basic dynamical principles on which this success presumably depends. In particular both the straightness of the rajectories, and exchange degeneracy, are completely unexpected, and seem guite at variance with the putential scattering ideas which motivated the introduction of Regge poles intc particle physics. In potential scattering $[4,5,14]$ the leading trajectories satisfy dispersion relations of the form

$$
\begin{equation*}
a(t) \cdot(\cdot)+\frac{1}{\pi} i_{0} \operatorname{Im} a(-1) \text { ir } \tag{8.1}
\end{equation*}
$$

and are strongly curved, thear reiparts achme a mavinem hos far dowe
 erate trajectortes oc.ar only th the absonce of an exchange (Majorata) torce.

Sone of the attompts which have been riade to calculate Regge trajectories from 'equival nt potentials' [15×77] have been able to reproduce such straight, cegenerate trajectories. The lack of curvature is in fact strong evidence that the chanands which control the dunmics are of very high mass [278]. This is clear from (6.1) In that if the threshold, f_{0}, in (8.1) is very for way we caa approximate the ateyen iv a pole

$$
\begin{equation*}
\alpha(t)=\alpha(\infty)+R /\left(t_{\mathrm{p}}-1\right) \text { for } \mid t<t_{0} \tag{8.2}
\end{equation*}
$$

where $t_{p} t_{o}$. Then $\alpha^{\prime}(0)=A / t_{\mathrm{p}}^{2}$ and $\alpha^{\prime \prime}(0)-2 R / t_{\mathrm{p}}^{2}$ w we get $\alpha^{\prime} \times \alpha^{\prime \prime}($ prime $d / d l)$ and the irajectory : wearly atraight for small t

The dombance of such a high mass chamel is stiongly suggestive of the hervy quark model of course, and this can also expiain why the trajectories are exchang ${ }^{2}$ degencrate in that there will be no particle-exchange forces in the exotic qqu char na. Wu: only in the ga! channel. But, it should be noter that the observed residues; will not $\therefore \therefore$.an togenerate in this model, for what we see are the couplings to low ma.........n's, and it is only in the mobserved qq channel that the resiaues Fill be degeneate [2it]. There is a aifficulty with this quark mod 1 however [278], for th the tra, aciciy is to mey (8.2) with $o(0)=\frac{1}{2}$ and $\alpha^{\prime}(0)=1 \mathrm{Gev}^{-2}$, we have

$$
\alpha(x)=\frac{1}{2}-t_{\mathrm{p}} \mathrm{Gev}^{-2}
$$

Now ip is above the $q g$ threshold at $4 m_{q}^{2}$, so th the uarks h?ve m, ses of anout 10

 term $k /\left(s-\lambda^{2}\right)$ corresponds to a $:-a d$ po:e in the t-channel d plane at -1 . To re-mow- this pole we must require that the potential obey $S C R$ (like stction 2.9). In corficuration space these SCR correcpond to zeros in the potential at the origin, say $f(r)=g r^{n} e^{-\lambda r}$, and we requir $n: 400$. It is hard to see how such a potentia can be strong enough to produce highly bound states (though of ccorse the analogy bith potential scattering could break down completely). Very similar remarkappiy even if we do not re uire the existence of real $c_{\text {a }}$ arks tut simply use them to simulate the coupling to rany-particle channels. In a wen model the trajectodes are CDD trajector es as far as the low mass chanels are concerned, and it is hard to see how Re, ge behaviour can hold for $s \ll n_{Q}^{2}$.

An alternative possibility is that the trajectory obe we the wire cuntracief dispersica relation (3.15). We have seet that this is in gord ace a d with 61.6 wherved behavor of $\operatorname{Im} \alpha$, at least for meschs. But in this case a is wt ietc.mi' I by unitarity at all (which simply detern, nes $\operatorname{Im} o$), an the two subtraition purameters $\alpha(0)$ and α^{\prime} are arbitrary. The trajec:ories are now IDD urajustories i and atsan Since in fact α is observed to ba approximately the same for all trajec,uries we can s:culate that it represents a fundimenta: constant of arong interactions, ant that untarity (via $\operatorname{Im} \alpha$) simply determines the small de viatir of α trom this uni.
versal value in inciviciual trajectories. However, this takes us so far from f otential scattering that it becomes hard ti see why there should be any application of Rege theory to particle physics at all.

We conclude therefore that the straightness of Regge trajectories is one of the most baffling, and most important, problems of alementary particle thcory. But it it can be solved then we shall probably be we'l on the way to a complete undersanding of stroug interaction dynamics.

ACKNOWLEDGEMENTS

I am ve: y gratelul to many of my colleagues in Durham, eqpecially Professor E.J.Squi es and Dr_{r}. R. C. Johnson for their comments on this article It has also benefittf from correspondence with Drs. M. Tacob, E.L. Berger, G L. Kane, J. K Storr \lrcorner w, G. Ringland and R.J. N. Phillips.

REFERENCES

[1] T. Regge, Nuovo Cimento 14 (1959) 951.
[2] T. Regge, Nuovo Cimento 18 (1960) 947.
[3] A. Bottino, A. M. Longhonl and T. Regge. Nuovo Cimento 23 (1962) 954.
[4] E.J. Squires, Complex angular momentum and particie physics iBentamin, dew fork, 1963).
[5] R. G. Newton, The complex J plane (Bentamin, New Yosk, 1964).
[6] G. F. Chew and S. C. Frautschi. Phys. Rev. Letters 7 (1961) 394.
[7] R. Blankenbecler an 1 M. L. Goldberger, Phys. Rev. 126 (1962) 766.
[8] S. C. Frantschi, M. Gell-Mann and F. Zachariasen, Phys. Rev. 125 (1962) 2204.
[9] G. F. Chew, Rev. Mod. Phys. 34 (1962) 394,
[10] G. F. Chew, The dynamical S-matrix (Benjamin, New York, 1966).
[11] H. Pilkuhn, The interactions of hadrons (Ne rth-Hollond. Amsterdam, 1967).
[12] A. D. Martin and T. D. Spearman. Elementary particle theory North-Hollam? Amstredam, 1970).
[13] H. Burkhardt, Dispersion relaticn dynamics (North-Holland. Amstertas: 196,
[14] V. De Alfaro and T. Regge, Potential scattering (North-Holland, Ams ardam, $190{ }^{\circ}$.
[15] P. D. E. Collins and E.J.Squires, Regge poles in particle physics (Springer, Berhn. ;968).
[16] J. D. Jackson, Rev, Mod. Phys. 42 (1970) 12.
[17] G. E. Hite, Rev. Mod. Phys. 41 (1969) 669.
[18] V. Barger and D. Cline. Phenomenological theories of high energy seator, we Defolauin, New York. 1969).
[19] S. Mandelstam, Phys. Rev. 112 (1958) 1344: 115 (1959) 1741; 115 (1959) 1 52,
[20] See any introductory book, e.g. refs,[11-13 or 15$]$ above, for the kinematics, artan explanation of the idea of crossing.
[21] M. Jacob and G. C. Wick. Ann. Phys. 7 (1959) 404.
[22] T, L. Trueman and U. C. Wick, Ann. Phys. 26 (1964) 322.
[23] L. L. C. Wal ${ }_{\text {rer }}$ Phys. Rev. 142 (1966) 1187.
[24] G. Cohen-Tannoudii, A. More! and H. Navelet, Ann. Phys. 46 (1963)284.
[25] J. D. Jackson and G. E. Hite, Phys. Rev. 169 (1968; 124s.
raf A. R Eimonds. Angular monentum in quantum mechanics (Princeton Laversif, 1957).
[27] H. Lehmann. Nuovo Cimento 10 (1959) 579.
[28] M. E. Rose, Elementary theory of angular momentu 1 (Uiley, New York, 1957).
[29] M. Ancirews and J. G. ison, J. Math. Phys. 5 (1964) 139.1.
[30] W. Drechsler, Ntove Uimento 53A (1968) 115.

131 W. Drachalor, Compiex angular momentum heory in particlo physics. Trieste rewirt $*: 49 / 39$ ($: 969$), unpublishec.
$[32] \mathrm{E} .4$. Titchmarsh. The theory of functions. 2med. (oxford Univeraity, 1939) p. 1:6.

194; 4 Uminlagn: Ann. Phys. 19 (1962) 254.

[39] V. N. Grtbov and I. I. Pomeranchuk, Proc. 1962 CERN Conf. on hish arour - bysted, p. 522.
[39] If. Chemg. Phys, Rev. 130 (1963) : 283.
|40| A. , Barut and D. F. Zwanziger, Phys. Re:. 127 (1963) 974,

(42! 1.m. Grioov a ma. I. Pomeranchuk, Phys. Rev. Lettera 9 (1962) 23 .
[4] H. H. Dean and R. G. Nowton, Phes. Rer. 129 (1963) 1445.

[45] S. MacDowell, Phys. Rev. 116 (1969) 714.
(4G] P. I orruthers, Introchction to unltary symmetry (Interscie.ice, New York, 1966).
[47] M. Gourdin, Uritnry symnietries (North-Holland, Amsterdam, 1967).
[481 Proticle Datu Group. Rev. Mod. Phys. 42 (1970) 87.
(49) M. Rows. Nuovo Cimento Latters 3 (9973) 257.
(50| O. Cronnell ot al. Phor. Letters 29f! (1968) 1.36.
[51] J. D. Jackson and C.Quigg, Private communication in ref. [150].
[52| G. McClellan et al., Phys. Rev. Letters 23 (1969) 718.
[69] M. N. Focncciet al., Phya. Rev. Letwrs 17 (ac66) 890.
[54] P. D. B. Collins, R.C.Johnson and E.J. Squires, Phys, Letters 263 (i968) 223.
[531 G. F. Chow and S. C. Frautsch, Phys. Rev. Letiters 7 (1561) 394.
[50] H. (. Wohnson, Nucl. Phys. $B 5$ (1958) 673.
[5:] V. I'arger and D. Cline. Phys. Rev. Letters 16 (1966) 913.
[68; V. Marger and D. Clite, Phys, Rev. 155 (1967) 1792.
[39] R. M. Spect.r. Phys. Rov. 173 (1367) 1671.
[60| H. (uldberg. Phys. Rev. Letters 13 1967) 1391.

(na) | Hara, Phys. Rev. 136 (196t) 007.
(63) i Prankitn Phys. Rev. $170(196$) 1 lio6.

69, Fileater, Phym. Rev. $166,196,15: 49$.

(08) J. M. Wang and L. 1. Wang. Phys. Rev. D1 (1970) 663 ,

69, (i. Cohen-T.msoudfi, Fh. Salin and A. Morel, ziano Cimento 55A (1969) 412.
(i) M. i.e Bellac. Nuovo Cimento 55A (1968) 318.
(il) J. S. Hall, W. R. Frazer and M.Jacob. Phyw. Rev. Letters 20 (1568, 5is.
! 19 f J. N. Philips, Nucl. Phys. 82 (1967) 657.
|T3| M. I. Bellac. Phys. Letters 25B (196 त 524.
[if: L. Golderger and C.E. Tones, Plys. Rev. 150 (is966) 1269.
$175]$ H. Z. Freetman an ${ }^{\circ}$ N. M1. Wang, Phys. Roy. 153 (1367) 1565.
[76] R. E. Cutkosky \& ne as Deo, Phys. Rev, Lecters 19 11467, 12sta.

4. Chune and D. R Snider, Phys, Re: 162 (1967) 1635.
!G: Foller, Nuovo Cimento 37 (1965) 631; 53A (1967) 671.
 ; of Colorado Pres , 1964).
(30 1. P. Wigner, Aan. Math. 40 ; 1939) 159.
[81] : Ba-gmann, Ann. Math. 48 (1947) E68.
182) !. loos in ref. [19].

183 : \quad r. Boyce, J. Math. Phys. 8 (1967) $6: 5 ;$
 published).

[85] J.-M. Levy-Leblond, Nuovo Cirif wo 45 (1966) 「72.
[186] H. Sciarrino and M. Toller, J. W. ih. Phys. 8 (1967) 1252.
:87] G. Domokos and G. L. Tinde, Phys. Rev. 165 (1368) 1906;
K. M. Bitar and G. L. Tinale, Phys. Rev. 175 (1968) 1835;
P.K. Kuo and P.Suranyi, Phys. Rev. D1 (1970) 3416, 3424.
[88] G. F. Chew, Phys, Rev. Letters 16 (1966) 60.
[89] R. Oehme, Phys. Letters 28B (1968) 122.
[90] A. N. Diddens et Al., Phys. Nev. Letters 9 (1962) 108.111.
[91] J. Foley et al., Phys. Rev. Letters 1.0 (1963) 37t.
[92] K. Igi, Phys. Rev. 130 (1963) 820.
[93] E.J. Squires, Phys. Letters 7 (1963) 363.
[94] D. Atkinson and A. P. Contogouris, Nuovo Cimento 39 (1965) 1082, 1102.
[95] S. Mandelstam, Nuovo Cimento 30 (1963) 1127, 1148.
[96] D. Amati, S. Fubini and A. Stanghellini, Phys. Letters] (1962) 29.
[97] R. Oehme, ix: R. G. Moorhouse (Ed.), Strong interactions and high energy physies (Oliver and Boyd, London, 1964).
[98] R.J. Eden, F.V. Landshoff, D. I. Olive and J. C. Polkinghonne, The analytic S-matrix (Cambridge Iniversity, 1966).
[99] J. C. Polkinghorne, J. Math. Phys. 4 (1963) 503.
[100] V. N. Gribov, JETP (Sov. Phys.) 26 (1968) 414.
[101] C. Riek, Lawrénce Radiation Lab. preprint UCRJ-19453 (1970).
[102] G. A. Winbow, Phys. Rev. 177 (1969) 8533.
[103] V. V. Sudakov, JETP 30 (1956) 87.
[104] F. Henyey, G. L. Kane, J. Pumplin and M. H. Ross, Phys. Rev. 182 (1969) 1579.
$[105]$ R.J. Clauber, in: Lectures in theoretical physics, Vel. 1 (Wilev, New York, 1959).
[106] R. Geil-Mann and B. M. Udgnonkar, Phys. Rev. Letters 8 (1962) 346.
[107] E.S. Abers, H. Burkhardt, V. L. Teplitz and C. Wilkin, Nuovo Cimento 42 (1966) 365.
[108] P. V.Landsínff, Phys. Rev. 177 (1969) 2531; Acta Physica Austriaca, Iuppl. VII (1970, 145.
[109] D. R. Harrington, Phys. Rev. D1 (1970) 260.
[1:0] C. Wilkin. Lecture at the Summer School on diffractive processes, McGill University (1960) (unpublished).
[111] R. C. Arnold, Phys. Rev. 153 (1967) 1523.
[i12] C. E. Jones and V. L. Teplitz, Phys. Rev. 159 (1967) 1271; J. B. Bronzan and C. E.Jones, Phys. Rev. 160 (1967) 1494.
[113] J. H. Schwarz, Phys. Rev. 162 (1967) 1671.
[114! R. Hwa, Phys. Rev. 162 (1967) 1706.
[115] P. V. Jandshoff and J. C. Polkinghorne, Fhys. Rev. 181 (1969) 1989.
[116] R. L. Kelly, G. L. Kane and F.Henyey, Phys. Rev. Letters 24 (1970) 1511;
G. L. Kane, F. Henyey, D. R. Richards, R. Russ and G. Williamson, Phys. Rev. Letters

25 (1970) 1519. Many references to earlier work are given in ref. [104].
$[117]$ M. Ross, F. S. Henyey and G. L. Kane, Nucl. Phys. B23 (1970) 269.
[118] P.J. O'Donovan, Fhys. Rev. 185 (1969) 1902.
[119] R.J. Rivers, Nuovo Cimento 63A (1969) 697.
[120] J. Finkelstein asd M. Jacob, Nuovo Cimento 56A (1968) 681.
[121] L. Durand and Y. T. Chiu, Phys. Rev. 139 (1965) B646.
[122] R. Torgerson, Phys. Rev. 143 (1966) 1194;
See also G. Tintopoulos and S. B. Trieman, Phys. Rev. I2 (1970) 805.
[123! R. Qehme, Phys. Lev. Letters 10 (1969) 450; Phys. Rev. D2 (1970) 801.
[124] P. Kaus and F. Zachariasen, Phys, Rev. D1 (1970) 2962;
J. S. Ball. G. Marchesini aad F. Zachariasen, Plys. Letters 32B (1970) 583.
[125] V. N. Gribov and A. A. Migdal, Sov. J. of Nucl. Phys. 8 (1969) 583. 703.
$\{126\}$ R. C. A rnolu ind Mi. E, Blackmon, Phys. Rev. 176 (1968) 2082.
[127] M. L, Blackmon and (. R. Goldstein, Phys. Rev. 179 (1969) 1480.
[i28j M. L. Blackmon, Phys. Rev. 178 (1969) 2385;
M. L. Blackmon, G. Kramer and K. Schilling, Fhys, Rev. 183 (1969) 1452;
M. L. Blackmon and G. R. Goldstein, Phys. Rev. D1 (1970) 2675, 2707.
[129] P. Finkler, Phys. Rev. D1 (197:) 1172.
[130] E.J. Squires, preprint, Generalized unitarity and fixed J-plane poles (1970), unpublished.
[131] R. Carlitz and M. Kislinger, Phys. Rev. Leiters 24 (1970) 186.
[132] F. Ilalzen, A. Kumar, A. L. Martin and C. Michael, Phys. Letters 32B (1970) 111.
[133] R. Dolen, D. Horn and C.Schmid, Phys. Rev. 166 (196ㅇ 1768.
[134] A. Donnachie in T. W. Priest and L. L. J. Vick (Eds.), Partsele interactions at high energes (Cliver and Boyd, London, 196) .
[135] I. M. Blatt and V.F. Weiskopf, Theoretical nuclear physics Wiley, New Mry : 11. A. Weidenmuller, Phys. Lethers 24B (1967) 442.
[136] A. Donnachie and R. G. Kirsopp, Nucl. Phys. B10 (1969) 433.
[137] Y. C. Liu and S. Okubo, Phys. Fev. Letters 19 (1967) 190; C. Ferro-Fontan et al., Nuovo Cimento 584 (1968) 534.
[138] Fi.J. N. Phillips, Lectures on Regge phenomenology (1979), unpulished.
[139] R. Amblard et al., Submitted to Luad Conference (1962);
V. 己arger and R.J. N. Phillips, Phys. Rev. 187 9969) 2210.
[140] C. Schmid, Phys. Rev, Letters 20 (1968) 689.
[141] ©. B. Chiu and A. Kotanski, Nucl. Phys. B7 (1968) 615; B8 (1968) 553.
[142] F. D. B. Collins, R. C.Johnson anc. E.J. Squires, Phys. Letters 27 B (1263) 23.
[143] P. D. B. Collins, R.C.Johnson and G. G. Ross, Phys. Rev. 176 (1968) 1952.
[144] See also the lectures of M. Jacob, Duality in strong interaction, CERN Th. 1016 , $196:$ inpublisted and;
11. Harari, Duality and hadron dynamics (1969) unpublished.
[145] P. G.O. Freund, Phys. Rev. Letters 20 (1968) 235.
[146] H. Harari, Phys. Rev. Letters 20 (1968; 1395.
[147] C. I. Chiu and J. Finkelstein, Phys. Letters 27 B (196 1910.
[148] C. Schmid, Nuovo Cimento Letters 1 '969) 165;
V. Earger ind C. Michael, Phys. Rev. 86 (1969) 1592.
[149] H. Harari, Phys. Rev. Letters 22 (1969) 562.
[150] J. L. Rosnec, Phys. Rev. Letters 22 (1969) 689.
[151] J Z. Rosner. Phys. Rev. Letters 21 (1968) 950.
[152] R. K. Logan and D. P. Roy, Nuovo Cimento Lette:s 3 (1970) 517.
153 H. Harari and Y. Zarmi, Phys. Rev. 187 (1989) 2230.
[104] R. C.Johnson, Phys. Rev. 183 (1969) 1406.
[155] G. Veneziano, Nuovo Cimento 57A (1968) 190.
$1156]$ D. Silvers and J. Yellin, Review of recent work on harrow reanman \because. UCRI,-19418 (unpublisbed).
[157] C. J. Goebel, unpublished report, see Harari ref. [144]
[158] F. Wagner, Nuovo Cimento 63A (1969) 393.
[159] C. Lovelace, Phys. Letters 28 B (1968) 264.
[160] C. Schmid, Phys. Letters 28B (1968) 348.
[161] V.A. Alessandrini, D. G. D. Freund. R. Oehme and E.J.Squ. Phys. letter: :- F (1968) 456.
[162] P. D. B. Collins, G G. Ross and E.J. Squires, Nucl. Phys. B10 (99) 45.
[163] G. A. Fingland and R.J. N. Phillips, Nucl. Phys. B13 (1969) 274.
[1\&1] C. Lovelace, CERN prepint Th. 1041 (1969) unpublished:
S. Humble, Nuovo Cimento Letters 2 (1969) 541 ;
D. Atkinson: ot al., Fhys. Letters 29E (1969) 423 :
K. Huang. Phys. Rev. Leifers 23 (1968) 902;
N. F.Bali, D. D. Coon and J.W. Dash, Phys. Rev. Letlars 23 (196id !ou:
M. Suzuki, Phys. Rev. "etters 23 (1969) 205;

[145] G. Altarelli and H. R. Rubinstein, Phys Rev. 176 (1969, 2165.
[166] S. Mandels cam, Phys. Fev. 184 (1969) 1625.
[107] Y.A. Alessandini and 1), Amati, Phys. Letfe's 293 (1969) 193.
[168] K. Igi, Phres. Letters 26 B (1968) 330;
N. Viraso:o, Phys. Re'. 184 (1969) 1621;
Y. Hara, Phys. Rev. 182 (1969) 1906;
K. Igi and:- Storrow, suovo Cimento 62A (1939) 972 :

1. Inami, fízvo Cimento 63A (1799) 987;
K. Fretzi and K.Igi, N:ovo Cimento 63A (1969) 569.
[169] E. L. Bergur and G. (. Zox, Phys. Rev. 188 (1969) 2120.
[170] M. A. Virasoro, Phys. Rev, Lettere 22 (1 469) 37;
Chan Hong-Mo, Phys. Letters $28 B$ (1969) 425;
Chan Hong-Nio and T.S.Tsun, Phys. Letters $28 B$ (1969) 485;
J. L. Hopkinson and r Plahte, Phys. Letters $28 B$ (1969) 489 ;
Z. Koba and H. B. Nielson, Nucl. Phys. B10 (1969) 633.
[171] X. Bardakci and H. Ruegg, Phys. Letters 28B (1968) 342.
[172] G. Lovelace, Veneziano theory, CERN Th. 1123 (1970) unnublished.
[17. Chan Hong-Mo, Multi-particle phenomenology, CEYN Th. 1089 (1969) unpublished.
[174] S. Mandelstam, ref. [166] and Phys. Rev. D1 (1970) 1720, 1734, 1745 ;
K. Bardakci and M. E. Halpurn, Phys, Rev. 183 (1969) 1456;
K. Kikkawa, B. Sakita and M. A. Virasoro, Phys. Rev. 184 (1969) 1701.
[175] V. Aleasandrini, D. Amati, M. Le Bellac and D. Olive, Dual multi-pariticle theory, CERN Th. 1160 (1970) unpublished.
[176] D. ※. Gross, Nucl. Phys. B13 (1969) 467;
S. Fubini, D. Gordon and G. Veneziano, Phys. Letter $29 B$ (1969) 679.
[177] M. Ahmad, Faygazuddin and Riazuddin, Phys. Rev. Letters 23 (1969) 504;
I. Bender and H.J. Rothe, Nuoro Cimento Latters $2(699) 477$;
F. Drago, Nuovo Cimento Letters 2 (1969) 712.
[178] G. C. Fox, Skeletons in the Regge cupboard, Talk at $: 969$ Stony Brook Conference, unpublished.
[179| E.J. Squires, Regge pole phenomenology, Lectures at Heidelberg Summer School (1970), unpubished.
[180] R.J. N. Phillips, ref. [138].
[181] L. Durand, Review of Reggeism, Coutder conference on high energy physics (1969), umpubitmed.
[182] K. Logan, Phy*. Rev. Letters 14 (1965) 414.
[183] N.J. N. Phillipe and W. Rarita, Phys. Rev. $139 B 19$ is) 1336.
[184] G. Hohler el ai., Phys. Letters 20 (1966) 75.
[185] F.Azbad and C., B. Chtu, Phys. Rev. 147 (1966) :045.
[186] R.J.N. Phillips, Nuovo Cimento 45 (1966) 245.
[187] B. Desei, D. Gregorich and Remachandran, Phys. Rev. Letters 18 (1967) 565.
[188] S. Mjnamjet al., Mrovo Cimento Letters 3 (197) 124.
[189] V. Barge and P. i. N. Phillips, Phys, Rev. 187 1969y 2210.
[190] J. F. ie Erion and A. Darem, Nucl. Phys. B16 (1970) i1i.
[191] A. Ahmadzadeh and T. C.Jackson, Phys. Rev. 187 (1963) 2078.
[192] S. Y. Chiu, B. R. Desai and D. P. Roy, Phys. Rev. 187 1969) 1896.
[193] R. C.Johnson and E.J. Squires, Phys. Letters 32 B (1970:355.
[194] L. Sertorio and M. Toller, Phys. Rev. Jetters 19 (1967) 1146.
[195] A. Ahmadzadeh and W. B. Kaufman, Phys. Rev. 88 (1969) 2438.
[195] F.Arbab, N. F. Bali and J.W. Dash, Phys. Rev. 158 (1967) 1515.
[197] C. Michael, Nuel. Phys. B8 (1968) 431.
$[198]$ J. N. J. White, Nucl. Phys. 1373 (1969) 139.
[199] B.J. Haxtley, R.W. Moore ave K. M.J. Moriarty, Phys. Rev. 187 (1969) 192a.
[200] F. Henyey et al., Phys. Rev. 182 (1969) 1579.
[201; R. Aviv and D. Hora, Phys. Rev. 186 (1969) 1510.
[202] R.J. N. Phillips and W. Rarita, Phys. Rev. Letters 15 (1965) 807.
[203] K. W. Lai and J. Louie, Nuci. Phys. B19 (1970) 295.
\{204] P. R. Ativil, F. Halzen, C. Michael and J. Weyers, Fhys. Letters 31 B (1970) 303.
[205] R. I. Mathews, Nual. Phys. B11 (1969) 3.59.
[206] G. C. Fox and L. Sertorio, Phys. Rev. 176 (1968) 739.
[207] J. P.ATE
12081 J. Froyland. Nucl. Phys. B11 (1969) 204.
[209] G. L. Kane, F.Henyey, D. R. Richards, M. Hoss and G. Williamson, ref. [116].
[210] M. Colocci, Nuovo Cimento Letters 4 (14* 0) 53.
[211] B. Gorezyca and M. Hayashi, Acta Physica Polonica 36 (1969) 47.
[212] H. Harari, Photoproduction mechanisms, in: Proc. 4 th Int. Symp. on electron and photon ir eeractions, Daresbury, 1969.
[21: P. A. Collins et al., Nucl. Phys. B20 (1970) 381.
[214] R. Diebuld, Phys. Rev. Letters 22 (1969) 204.
[215| R.J. N. Phillips, Nucl. Phys. B2 (1967) ESt.
[216. R. C. F. Devenish, Nucl. Phys. Bi4 (1969) 639.
[217] E.Arbab and H,W, Dash, Phys. Rev. 163 (196i) 1603.
[219]C. D. Frogerte, Nucl. Phys. BG (1968) 421.
[219] Z. Ming Mn et al., Phys. Rev. Letters 24 (1970) 1031
[220] M. L. Blso mon and G. R. Goldstein, Phys. Rev. Di (1970 2675.
[221] J. L. Jacksun and C.Quigg, Nucl. Phys. 822 (1970) 30...
\{202\} 1. Bonder, Dorsch and H. J. Rothe, Nuovo Cimento 62 (1969) 1026.
[223] P. D. B. Collins and F. D. Gault, University of Durham preprint (1970), unpublished.
[224] R. Diebold, High-ener|\% photoproduction. SLAC preprint : $\mathrm{LAC-P[B-673}$ (].69). unpublished.
[225] E. Gotsman, Phys. Rev. 180 (1969) 1543.
[226] J. P. Ader and M. Caprlevile, Nucl. Phys. B17 19701 127.
\{27] A. Dar, Dips and spikes in do/dt for high energy exchange reactions, unr ubliched (1970).
[228] J. Froyland, Nucl. Fhys, B12 (1969) 410.
[229] F.J. Hadjioannou and P. N. Poulopoulos, Nuovo Cimer.co Letters 3 (1970) 354.
[230] V. Basger and D. Cline, Phys. Rev. Letters 21 (1968) 392.
[231] E. A. Pascos, Phys, Rev, Letters 21 (1968) 1855.
[232] K. Igi, S. Matsuda, Y. Oyanagi and H. Sato, Fhys. Rev, Letters 21 (1968) 580.
[233] V. Barger and P. Weiler, Phys. Letters 30B (1969) I65
9234] V. Barger and C. Michael, Phys. Kev. Letters 22 (1969) 1330.
[235] R. L. Kelly et al., ref. [116].
[236] E. L. Berger and G. Fox, Argonne preprint ANE/HEP 7019 (970), umpublished.
[237] F. Drago et al., Phys. Letters 318 (1970) 647.
\{238] A. D. Martin and C. Michael. Phys. Letters 32B (1970) 294.
[239] See e.g., A. D. Martin, in: G. Hohler (Ed.) Springer trects in modern physics. : 1.35 (Springer, Berlin, 1970).
[20] V. Barger, Phys. Rev. 179 (1969) 1371.
[21] V. Barger, D. Cline and J. Matos, Phys. Letters 298 (1969) 121.
[242] G.V.Dass, C. Michael and R.J. N, Phillips, Nucl. Phys. B9 (1969) 549.
[243] W. Rarita, R.J. Riduell, C.B. Chiu and R.J. N. Phillips. Phre gav. ?os anc

[245] M. Ciftan and G. Patsalsos, Phys. Rev. Dl (1970) 215
(246) S. Fenster and K. C. Wali, Phys. Rev. D1 (1970) $1 \frac{14}{2}$
[247] G. C. Joshi and A. Pagnamenta, Phys. Rev. Dl (1970) 3117.
[248] B. K. Fal, Phys. Rev. Dl (1970) 1405.
[249] C. B. Chiu and J. Finkelstein, Nunvo Cimento 57A (1968) 649 : 54 A (ishey 19.
[250] R. C. Arnold and M. L. Blacknon, Pkys. Rev. 176 a968) 2082.
[25i] M. L. B'qckmon and G. R. Goldstein, Phys. Rev. 179 (1969) 1480.
[252] S. C. Frautschi and B. Margolis, Nuovo Cimento 56A (1968) 1155.
[253] ․ Y. Pomeranchuk, JETP (Sov. Phys.) 7 (1958) 499.
Na4 -i, 2. ignoli and G. Violini, Phys. Letters 31 E (1970) 533.
[255] V. Barger and R.J. N. Philips, Phys. Rev. Letters 24 (1970) 34.
[256] R. J. Eden, Phys. Rev. D2 (1970) 529.
[257] A. Martin, CERN report Th. 1075 (1969), (mpublished.
[258] V. Harger and R.J. N. Fhilhips, Phys. Letere 318 (1970) 643.
[259] J. Finkelstein, Phys, Rev. Letters 24 (1970) 172.
[260] R. A mowitt and F. Rotelli, Nuovo Cimento Letters 4 (1970) 179.
[261) G. G. Beznogihl et al., Phys. Letters 30 S (1969), 274.
[26a] G. Hohler, F.Steiner and R. Strauss, Z. Physik 233 , 100 and: P. Achuti:an, H. G. Schlaile and F.Stemer, Nucl. Phys. Bot (1ati
[263] K. S. Kolberg and B. Margolis, Phys, Letrers 318 (1970) "0.
\{264] Y. Hara, Phys. Letters 23 (1966) 696.
[265] A. H. Mueller and T. L. Trueman, Phys. Rev. 160 (1967, 1296.1006.
[266] M. R. Rubinstein, G. Veneziano and M. A. Virasoro, Phys. Rev, lot ishon 14t.
[267] M. Damashek and F. \quad. Gilman, Phys. Rev. Di (1970) 1310.
[268] l. Van Hove, in: Garmost (Ed.), Proc. 13th Int. Conf. on hish nemse physis it niti sity of California Press, 1967).
[269] T. Barger and D. Cline, Phys. Re\%. Lerters 24 (19:0) 113.
[270] T. J. Weare, Nuovo Cimento Letters 4 (1970) 251.
[271] L. Di Lella, in: G. von Dardel (Ed.), Proc. Lund Int. C. af. on elementary partictes, 1969.
[272] D. R. O. Morrison, in ref. [271].
¿273] C. Michael, Phys. Letters 29B (1389) 230.
[274] P. G. O. Freund, Phys. Rev. Letters 21 (1968) 1375.
[275] M. B. Bari and M. S. K. Razmi, Phys. Rev. D2 (1970) 2054.
[276] E.J.Squires, ref. [179] has given a vigorous defence of this viewpoint.
[277] See, e.g.: P.D.B. Coilins and R.C.Johnson, Pkys. Rev. 177 (1969) 2472; 182 (1969) 1755; 185 (1969: 2020.
[278] P. D. B. Collins, R.C.Juhnson and E.J.Squires, Phys. Lethers 26 B (1968) 223.
[279] E.J. Squires and P.J.S. Watson, Ann. Phys. 41 (1967) 409.
[280] V. Barger and C. Michael, Phys. Rev. 186 (1969) 1592.
[291] M. Spiro and A. Derem, Nuovo Cimento Letters 4 (1970) 553.
[282] R.J. N. Phillips and W. Rarita, Phys. Rev. 140 (1965) B200.
[283] M. L. Blackmon and K. C. Wali, F'ys. Rev. D2 (1970) 258.
[284] B. Careras and A. Donnachie, Nucl. Phys. B16 (1970) 35.
[285] J. Botbe and J. R. Fulco, Phys. Rev. 182 (1970) 1837.
[286] C. Meyers and Ph. Salin, Nucl. Phys. B19 (1970) 237.
[287] D. Cline, J. Matos and D. D. Reeder, Phys. Rev. Letters 23 (1969) 1318.
[288] G. V. Dass and C. Michael, Phys. Rev. 175 (1968) 1774.
[289] D. Griffiths and R.J.Jabbur, Nucl. Phys. 1111 (1969) 7.
[290] G. Gidal et al., Phys. Rev. Letters 23 (1969) 494.
[291] M, Krammer and U. Maor, Nucl. Phys. B13 (1969) 651.
[292] K. Kajantie and P. V. Rusitcanen, Nucl. Phys. B13 (1969) 437.
['yd] M. Le Bellac and G. Plaut, Nuovo Cimento Letters 1 (1969) 721.
(29] C.B.Chit and S. Matsuda, Phys. Letters 31B (1970) 455.
[295] B. Diu anci M. Le Relfac, Nuovo Cimento 53A (1968) 158.
[296] A. D. Contogouris, J. P. Lebrun and G. von Bochman, Nucl. Phys. B13 (1969) 246.
[297] R. A. Miller, Phys. Rev. D2 (1970) 598.
[298] J. Tran Thast Van, Nuovo Cimento Letters 3 (1970) 678.
[299] A. P. Contogouris and J. P. Lebrun, Nuovo Cimento 64A (1969) 627.
[300] G. Benfatto, F. Nicclo and G. C. Rossi, Nuovo Cimento 64A (1969) 1033.
[301] A. Dar, T. L. Watt ; and V. F. Weisskopf, Phys. Letters 30 B (1969) 264.
[302] R. P. Bajpai and A. Donnachie, Phyr. Letters 30 E (1569) 344.
[303] A. Capella and J. Tran Thanh Van, Nuovo Cimento Letters 1 (1969) 321.
[304] C. Heyers et al., Nucl. Phys. B23 (1970) 99.
[305] A. Krzywicki and J. Tran Thanh Van, Phys. Letters 3013 (1969) 185.
[306] D. Birnbaum et al., Phys. Letters 31B (1970) 484.
[307] D.J. Millman and R. Henzi, Nucl. Phys. B19 (1370) 637.
[308] M. Markytan and P. Schmid, Nuovo Cimento Letters 3 (1970) 51.
$[305]$ L. M. Nath and D. J. George, Nuovo Cimento Letters 1 (1969) 111.
[310] B. Harper et al., Phys. Rev. 168 (1968) 1773.
[311] J. Geike and K. H. Mutter, Phys. Rev. 184 (1969) 1551.
[312] A. B. Kaidakov and B. M. Karnakov, Phys. Letters 29B \{1960) 372.
[313] N. Kwak and L. Nicholas, Phys. Rev. 187 (1969) 2088.
[314] D. G. Fincham et al., Nucl. Phys. B13 (1969) 161.
[315] :'. A. Collins et al., Phys. Rev. D1 (1970) 2619.
$[316]$ P. Genshi, Nuovo Cimento Letters 2 (1969) 381.
[317] G. Benfatto et al., Nuovo Cimento Letters 1 (1969) 537.
$[318]$ M. L. Blackmon et al., Nucl. Phys. B12 (1969) 495.
[319] J. Froyland and D. Gordon. Phys. Rev. 177 (1969) 2500.
[320] R. F. Amann, Phys, Rev. DÉ f1970) 561.
[321] Y. Noiret et al., Phys. Letters 265 (1968) 454.
[322] R. D. Bajpai and A. Donnachie, Nucl. Phys. 117 (1970) 453.
[323] J. V. Beaupre and E. A. Pascos, Phys, Rev. D1 (1970) 2040.
[324] F.. L. Anderson et al., Phys. Rev, Letters 23 (1969) 721.
[325] B. Carreras and A. Donnachie, Nucl. Phys. Bis (1970) 349.
[326] G. S. Abrams and U. Maor, Phys, Rev. Letters 25 (1970) 621.
[327) S. Minami, Nuovo Cimento Letters 4 (1970) 48.
[328] P. R. Auvil, F. Halzen and B. Margolis, Phys. Letter; 32B (1970) 709.
[329] R. Wit, Nuovo Cimen: 69.4 (1970) 312.
[330] W. Rarita, Phys. Rev. DI (1970) 3185.
[331] W.I. Meggs and A.M.Gleeson, Nucl. Phys. 1319 (1970) 323.
[332] B. Kayser, Phys. Rev. D1 (1970) 306.
$[333]$ R. K. Roychoudhury, R. Perrin and B. H. Bransden, Nucl. Phys. B16 (1970) 461.
[834] S. Y. Chiu and B. R. Dasai, Phys. Rev. 188 (i969) 2215.
[235] L. Chadua, Phys. Res. 186 (1969) 1463.
[336] R. E. Mickens and S. R. Deans, Nuovo Cimento Letters 2 (1949) 495.
[337] E. Ferrari and G. Violini, Nuovo Cimento Letters 4 (1970) 483.
[338] C. Daum, C. Micnaei and C. Schmid, Fhys. Letters 31B (1975) 222.
[339] T. Inami, Nuovo Cimento 63A (i960) 927.
[340] M. Lusignoli et al., Nuovo Cimente Letters 2 (1969) 419.
[341] V. Barger and D. Cline, Nuove Ciment 3 It ieers 2 (1969) 307.
[342] C. Lovelace, Nuc: Phys. 112 (1969) 25.
[343] F. J. Gilman, H. Harrari gnd Y. Zarmı, Phys. Rev. Letters 21 (1908) 3.3.
[344] R. G. Roberts, Nuovo Cimento 69A (1970) 321.
[345] S. Sohlo and E. Byckling, Nuovo Cimento ietters 3 (1970) 608.
[346] M. Greco. Phys. Letters 31B (1970) 216.
[347] M.Jacon and J. Weyers, Nuovo Cimento 66A (1970) 401.
[348] J. M. Kaplan and D. Schiff, Nuovo Cimento Letters 3 (1970) 19.
[349] A. Capella et al., Nuovo Cimento 63 (1969) 141.
[350] V. Barger, C. Michael and R.J. N. Phillips, Phys. Rev. 185 (1969) 1852.
[351] W. P. Hesse et al., Phys. Rev. Letters 25 (1970) 613.
[352] T. P. Cheng and W.-K. Tung, Phys. Rev. Letters 24 (1979) 851.
$[353]$ C. A. Dominguez, C. Ferro-Fontan and R. Suaya, Phys. Letters 318 (1970) 365.
[354] G. Venturi, Phys. Rev, 187 [1965; 2147.
[355] E. Goisman, P.D. Mannheim and U. Maor. Fhys. Rev. 180 (1969) 1703.
[356] J. Daboul, Nucl. Phys. B7 (1968) 651.

[358] C. Nichael, Nucl. Phys. B13 (1969) C44.
[359] E. i Berger and G. C. Fox. Phys. Rev. Letters ? (1970) 1743.
[360] A. Firestone et al., Phys. Rev, Letters 25 (1974. 959.
[361] T. Roth and G. H. Reminger, Phys. Rev. D2 (1970; 1293.

[^0]: In the above we 'lav. assumed the presence of a fixed pole in the resione st the what ture point. If this is a qent the residue behaves in the same wr. as at the correspondins righ-signature point, ami the amplitude is the same except for :an extra (a - jo from the signature factor.

